Experiences & Insights from Introducing Terrestrial Laser Scanning (TLS) to Geology Field Courses

Christopher Crosby (UNAVCO), Bruce J. Douglas (Indiana University), Shawn Carr (UNAVCO), David Phillips (UNAVCO)

2013 Geological Society of America meeting

UNAVCO is a <u>non-profit</u>, membership governed <u>consortium</u> of universities that facilitates geoscience research and education using <u>geodesy</u>.

UNAVCO supports <u>GPS</u>, <u>InSAR</u> and <u>LiDAR</u> data acquisition, data archiving, equipment, development & testing, training.

UNAVCO operates and maintains the **Plate Boundary Observatory** network of instruments.

UNAVCO Education & Community Engagement works to promote a broader understanding of Earth science.

GEODETIC IMAGING AT

Terrestrial LiDAR

ATT A

Airborne/ Spaceborne InSAR

Airborne/ Spaceborne LiDAR

TLS Community Support

Support Resources

- Instrumentation (6 scanners)
- Field engineering
- Data processing
- Training
- Data archiving & dissemination

Community Building

- Workshops
- Inter-Agency collaborations & partnerships

Education and Outreach

- Training courses
- Field camps (~90 students in 2013)

Scanners funded by the National Science Foundation

	Riegl VZ- 1000	Riegl VZ- 400	Riegl Z620	Leica C10
Laser	1550 nm	1550 nm	1550 nm	532 nm
Wavelength	(near IR)	(near IR)	(near IR)	(green)
Effective Range (max)	1400 m	500 m	2000 m	150 m
High-speed	122,000	125,000	11,000	50,000
meas. rate	points/sec	points/sec	points/sec	points/sec
Precision	5 mm	5 mm	10 mm	4 mm
Accuracy	8 mm	5 mm	10 mm	6 mm
Field of View	100° x 360°	100° x 360°	80° x 360°	270° x 360°
Dimensions	308mm x 180mm	308mm x 180mm	463mm x 210mm	238mm x 395mm
Weight	9.8kg	9.8kg	16kg	13 kg

TLS field camp overview

- Initiated in 2009 at Indiana University Geologic Field Station as part of G429 course (geophysics elective).
- 2013 = Indiana, U. Houston, U. Michigan, UC Santa Cruz

Program:

- 5 day elective within or at end of camp program
- UNAVCO provides staff, TLS and GPS instruments. Faculty define exercises, study sites, curriculum.
- Emphasis = TLS technology, survey design, hands-on operation of equipment, and analysis of data.

TLS at IUGFS

- New scan site each day increasing complexity and independence
- Emphasis placed on project metadata and documentation
 - Instrument set up and data processing flow charts
 - \blacktriangleright Equipment lists, site maps, and tables of scan parameters.

Day 1: Harrison borrow pit site w/ fault. Scanner operation and offset measurements from TLS data

TLS at IUGFS

Sand/mud ratios for an interval of the Kootenai Fm at Sandy Hollow. [*Matt Booth, Whitman College*]

Comparison of 1959 fault scarp observations with TLS scan data to evaluate scarp degredation. [*Elizabeth Horne, Utah State*]

TLS at IUGFS

Final Project: Independently design & propose a survey, deploy the instruments, collect and analyze data.

Scan network for IUGFS campus dataset

Curriculum Materials

TLS field camp manual

- Developed for use at IUGFS
- TLS introduction
- TLS theory

Illustration of the impact of angular step size on scan resolution

G429g

Geophysical and Tectonic Applications to Field Investigation in the Northern Rocky Mountains 2013

Compiled by: Shawn Carr (UNAVCO), Bruce Douglas (Indiana University), Christopher Crosby (UNAVCO)

With contributions from: David Phillips (UNAVCO), U. Texas Dallas Cybermapping Lab

Curriculum Materials

TLS field camp manual

Exercises & worksheets

Scan Resolution Parameter Worksheet

Table 4 Case analyse

Use this worksheet to determine the optimal and realistic scan times based on desired scan resolution. Beam diameter at instrument:

m (ReiglZ620=0.014; ReiglVZ400=0.007)

Beam divergence: _____radians (ReiglZ620=0.00015; ReiglVZ400=0.0003)

Constants for a given scanner

Using basic trigonometry, calculate various parameters to determine scan resolution, time, etc.

Table 1. Sc	can spacing	A statement of the statement of the			and the second second second		
Scan site and scan	Distance to target (m)	Spot size (m) [Dist*Diverg]+ Diameter	Angle of Incidence	Ellipse max diameter (m) Spotsize/sine[Angle]	Optimal measurement spacing (m)	Actual spacing used (m)	Comments
Harrison	Min	Diamotor	to target	setemates, supply and a	opcoing (iii)	usea (m)	
	Max		2		-		
	WIAX	<i></i>	-		4		
	Mean	~					
22 2	Min		2 B				
	Max						
x.	Mean	<i>z.</i>	, J] .		
	Min						
	Max]		
	Mean	36	S 8]		
2	Min	54 45					
	Max]		
	Mean						
Table 2. So	can time				<u> </u>	8	

Horiz scan	Optimal # horiz	Vert scan	Optimal # vert	Time for optimal scan [#horiz *	Time for actual scan		
gist (m)	measurements	QIST (m)	measurements	#vert " time/measurementj			
		21 T		2			
2	6	8 8		4			
÷		÷					
	Horiz scan dist (m)	Horiz scan dist (m) Optimal # horiz measurements	Horiz scan dist (m) Optimal # horiz Vert scan measurements dist (m)	Horiz scan dist (m) Optimal # horiz measurements dist (m) Optimal # vert measurements dist (m)	Horiz scan dist (m) Optimal # horiz measurements Vert scan dist (m) Optimal # vert measurements Time for optimal scan [#horiz * #vert * time/measurement] Image: Scan dist (m) Ima		

UNAVCO

Practical Considerations I

Group size & time management:

- Small groups, downtime
- Keep students working on activities, outcrop orientations, site maps
- Interleave TLS w/ mapping?

- Data processing takes time.
 Leave processing to UNAVCO staff(?). Advanced products not feasible overnight.
- TLS data analysis = less field time

Practical Considerations II

Site selection:

- Compact sites with limited vegetation preferable.
- Ease of access important
- Outcrops, fault scarps, fluvial terrace risers & cut banks, recently burned slopes.

Computing Resources:

- Analysis of data requires computer access.
- Pre-install TLS and GIS software.
- Budget time to distribute data

TLS field camp conclusions

- 90+ geoscience students Introduced to TLS technology and data analysis in 2013.
- Cutting-edge technology is complimentary to traditional field geology program, esp. when project areas/topics are tied into course curriculum.

- Students engaged. Demand increasing. Sponsor enthusiastic.
- Planning is essential site selection, time management, computing resources necessary to streamline operations and keep students engaged.

Thanks! crosby@unavco.org http://unavco.org/tls

2012 U. Houston Geophysics Field Camp, Red Lodge, MT