UNAVCO TLS Support Resources:

- What support does UNAVCO provide?
- How do I request support?
- Priorities and scheduling?
- Cost?
- Other resources to be aware of
- Online data access?
- Future trends & technology

TLS Community Support

Support Resources

- Instrumentation (6 scanners)
- Field engineering
- Data processing
- Training
- Data archiving & dissemination

Community Building

- Workshops
- Inter-Agency collaborations & partnerships

Education and Outreach

- Training courses
- Field camps (~90 students in 2013)

GSA 2012 UNAVCO TLS short course, Charlotte, NC

UNAVCO TLS Instrument Pool

- TLS instrument pool = 6 scanners
 - 3x Riegl VZ400
 - 1x Riegl VZ1000 (full waveform) NEW!
 - 1x Riegl Z620
 - 1x Leica C10
- Campaign and RTK GPS, tripods, various power supply options
- Instrument validation range
- License server w/ access to RiScan Pro, Cyclone, Polyworks, ArcGIS, Quick Terrain Modeler, MatLab, etc

Scanners funded by the National Science Foundation

EW!	Riegl VZ- 1000	Riegl VZ- 400	Riegl Z620	Leica C10
Laser	1550 nm	1550 nm	1550 nm	532 nm
Wavelength	(near IR)	(near IR)	(near IR)	(green)
Effective	1400 m	500 m	2000 m	150 m
Range (max)				
High-speed	122,000	125,000	11,000	50,000
meas. rate	points/sec	points/sec	points/sec	points/sec
Precision	5 mm	5 mm	10 mm	4 mm
Accuracy	8 mm	5 mm	10 mm	6 mm
Field of View	100° x 360°	100° x 360°	80° x 360°	270° x 360°
Dimensions	308mm x	308mm x	463mm x	238mm x
	180mm	180mm	210mm	395mm
Weight	9.8kg	9.8kg	16kg	13 kg

Education and Community Engagement:

- Short courses and workshops
 - Partners wanted
- Growing online knowledgebase of TLS tutorials, documentation, best practices.
- Incorporation of TLS into teaching K-12, undergraduate
 - Geology field camps have momentum

UNAVCO TLS PI Support – Costs & Prioritization

UNAVCO TLS Support Costs:

- For NSF-supported projects, PI pays field engineer travel and equipment shipping.
- For non-NSF supported work, full cost recovery required.

Project Prioritization:

- UNAVCO sponsors = NSF-EAR and NSF-OPP = highest priority.
- NSF-other and non-NSF = projects supported as resources allow.
 - Schedule flexibility helps

UNAVCO TLS PI Support – Request Support

All support requests must be formally logged through UNAVCO support request system.

http://achaia.unavco.org/public/newproject/supportform.aspx

UNAVCO staff will follow up coordinate specifics.

Get in touch at proposal development stage – UNAVCO can provide a budget, letters of support, planning advice

NSF EAR IF investment in lidar data and instrumentation

Cooperative facilities supporting NSF earth science

Open Topography

- Lidar data discovery & hosting
- Data processing & derived products
- Online data archive & preservation
- Cyberinfrastructure R&D
- Education & Outreach

- NCALM data distribution & online archive

- TLS data distribution
- Shared staff (Crosby)
 - CI R&D (e.g.

Community **NASA ROSES) Support:**

- EarthCube

- Airborne lidar collection
- PI Interaction
- Funding (grad. seed grants)
- Geosensing tech. R&D
- Education & Outreach

MOU:

- TLS instruments

- workshops & courses

- Event response (e.g., EMC EQ)

- Projects: B4 & EarthScope

- TLS instrument pool
- TLS data collection
- PI Interaction
- Geodetic imaging tech. R&D
- Data archive
- Education & Outreach

- UNAVCO (http://www.unavco.org/tls)
- OpenTopography (http://www.opentopography.org)
- NCALM (http://www.ncalm.org)
- University of Texas Dallas http://www.utdallas.edu/ research/interface/Resources.html

- Manufacturers, e.g.,
 - Riegl (http://www.riegl.com)
 - Optech (http://www.optech.ca)
 - Leica (http://hds.leica-geosystems.com)

UNAVCO Online TLS Archive

Community Services Data Instrumentation Software Science Learning

Organization & archive of TLS project data

- Raw scan data
- Point clouds
- Raw & processed GPS
- Metadata & site photos.
- Derived products.

Alpha version online:

http://tls.unavco.org

TLS Field Project Archive

Position: -50.607, 47.137

UNAVCO Online TLS Archive

TLS Archive Features:

- GPS: RINEX creation, submission to OPUS for position processing, generation of control point lists for georeferencing in RiScan or Cyclone.
- Laptop-based version for use by field engineers (tested summer 2012) to document metadata and manage data during field projects. Content synced with archive server upon return to Boulder.
- On-the-fly:
 - Format conversion (LAS, ASCII)
 - Data thinning and AOI subsetting
 - Simple gridding,
 visualization, export to
 Google Earth.

A Portal to High-Resolution Topography Data and Tools

Learn

myOpenTopo

Spotlight

NSF Renews Funding for OpenTopography

Overview Video

We are happy to announce that the National Science Foundation (NSF) has renewed funding for OpenTopography. The three-year renewal under the National Science Foundation's Geoinformatics and Earth Sciences: Instrumentation and Facilities (EAR-IF) program follows an initial three-year award from EAR-IF and the Office of Cyberinfrastructure, announced in late 2009.

Find Data

Latest News

OpenTopography at 2013 European Geosciences Union Meeting

Posted: April 07, 2013

OpenTopography will be at the 2013 European Geosciences Union (EGU) Meeting this week in Vienna, Austria and presenting a talk... [more]

10 New Point Cloud Datasets from Brazil, Alaska, California, Montana, North Carolina & Oregon

Connect with OpenTopography

Tools

9 days ago: 10 new #lidar datasets posted - data in AK, CA, MT, NC, OR, PA & Brazil, our 1st dataset from the S. Hemisphere: opentopography.org/index.php/news...

Data Summary

Total Coverage: 93,147 km²
Total Number of Lidar Returns: 533,927,158,741

Latest Lidar Datasets:

- Flathead Lake Biological Station, MT (September 2005)
- Mojave Desert, CA: Evolution of the Hector Mine Earthquake Surface Rupture
- North Sister, OR: Collier Cone Lava Flow
- Coastal Dune Fields of Garopaba and Vila Nova, Santa Catarina State, Brazil

OpenTopography Multi-Tiered Data Products

- Large user community with variable needs and levels of sophistication.
- Goal: maximize access to data to achieve greatest scientific impact.
- Big data treat data as an asset that can be used and reused

Download KMZ file: viz.tin.hs.kmz View with Google Earth browser plug-in

Download KMZ file: viz.tin.crhs.kmz
View with Google Earth browser plug-in

)penTopo

Search

s can be

er Center San Diego 0505

Data Status

- ~600 billion LIDAR returns
- 158 datasets
- 120,407 km²

MOUs & Partnerships

NSF: NCALM, UNAVCO, CZOs, LTER

Other: World Bank, Tahoe Regional Planning Authority, Teton Conservation District, Oregon Lidar Consortium, Idaho Lidar Consortium, ...

Service Agreements: State of Indiana Watershed Sciences Inc (for PG&E)

Diverse user base for these data, 3470 registered users, 21,000+ jobs, >30 billion pts/month downloaded.

Future - User Requirements & Workshop Recs

- Access to TLS instruments and data acquisition no longer "roadblocks" to NSF investigators. These are now "speed bumps".
 - More instruments are available and are easier to use.
 - Workflows optimized for Earth science applications.
 - New instruments still desired for special capabilities (i.e. water penetration, full waveform, very long range, etc.) and to ensure meeting demand.
- TLS data handling, processing and analysis are the new roadblocks. We are working to turn them into speed bumps now too.
 - Need for post processing workflows and best practices.
 - Need for data (and metadata) formats and standards.
 - Need for data analysis training.

- Faster & longer data collection
- Full waveform
- More streamlined workflows
- Better & more powerful analysis software
- Error analysis
- Continuous scanning deployments
- Mobile laser scanning (e.g., Blidar)
- Integration with other datasets (ALS, GPR, terrestrial radar/INSAR, etc.)

Structure from Motion: another way to gather high resolution topographic data

Fig. 1. Camera locations and image overlap.

Nissen, et al. in prep.

