

Permanent station GPS/GNSS antenna monuments and mounts supported by UNAVCO

2010 UNAVCO Science Workshop J. Normandeau, C. Meertens, B. Bartel (UNAVCO)

Summary

We compare eight long-term monuments and mounts currently in use in UNAVCO-supported projects. The designs range in height from 0 to 3 meters; substrates into which they are installed include soil, bedrock, and concrete; and costs range from approximately \$30 to \$15000. The more expensive options may be considered more stable, but in many places outside the US, logistical, economical, and material constraints make installation of deep- and shallow-drilled braced monuments at best difficult and at worst impossible. Simpler single-mast or concrete monuments offer less expensive, more portable installation options with acceptable stability.

When choosing a monument and mount, consider:

- Stability needed (precision needed)
- Funds available
- Time available for installation Site security
- Materials available (esp. international work)
- Site accessibility Site substrate

Requesting support from UNAVCO

UNAVCO is a non-profit, membership-governed consortium that supports and promotes Earth science by advancing high-precision techniques for the measurement and understanding of deformation.

UNAVCO can provide assistance with design, purchasing, and construction of geodetic monumentation to NSF- and NASA-funded scientists.

To request support from UNAVCO, fill out a support request form at: http://www.unavco.org. For questions, contact support@unavco.org. For more information on monuments and mounts, check out http://facility.unavco.org/kb.

Concrete pillar

mast

Custom

measure methane

bog.

release in a Minnesota

Antenna Mounts

SCIGN mount

Expensive but precise. Only needed if using a SCIGN dome.

Monument

4-5 stainless steel legs Description

in a tripod configuration cemented into the substrate up to depths of about 40 feet; welded together at the top.

Deep drilled

braced

4-5 1" diameter stainless steel legs in a tripod configuration epoxied or pounded into the substrate up to depths of about 5-6 feet; welded

together at the top.

Shallow braced

Of variable design, but typically consisting of reinforced concrete set within a tubular concrete form. The leveling mount and GPS antenna are secured to a stainless steel pin which is anchored within the top of the pillar.

A single 4"-diameter, 20'-long pillar containing pressurized, two-phase carbon dioxide to prevent thawing at the monument's base. Set ~16' deep into the ground; coupled to the permafrost with a slurry

of sand and water.

Thermopile

Lightweight aluminum mast bolted onto bedrock. Can be produced at heights of 0.5m, 1m, and 2m (1m shown here).

Polar mast

1.25" diameter threaded stainless steel mast cemented into bedrock. Throughout the Rio Grande network, masts used are ~5' long set into holes 16-24" deep.

Stainless steel Shallow foundation pin w/ mast Threaded pin cemented

or epoxied into the ground with a removable mast screwed onto it. Throughout the Afar network, masts used are 1" diameter, 0.5m-long stainless steel screwed onto a 10"-long threaded stainless steel pin cemented into bedrock.

all-thread cut to custom height, cemented or epoxied into bedrock or cement.

5/8" all-thread

5/8" stainless steel UNAVCO works with scientists to design custom monumentation when needed. Solutions are often simple and cost-effective, like the mount used here to fix a GPS antenna to a sawed-off tree to

Substrate

Bedrock, unconsolidated

Bedrock (drilled), unconsolidated (pounded)

Bedrock, unconsolidated

Permafrost

Bedrock, concrete

Bedrock

Bedrock, concrete

Bedrock, concrete

Stability

medium-high

1 hour

Install Time

1-3 days

2-3 people

1 person

Site Impact

Drilling

Requirements

Labor

medium

medium

high

1 person + drill crew

\$150

low

1-2 people

\$130

low

low

SECO 2072-series stainless steel adapter

Less expensive and also precise. Used in the US National Geodetic Survey's CORS network.

\$225, available from www.surveying.com.

Cup and brass adapter

Inexpensive but no leveling ability. Allows for antenna to be aligned to north.

\$50, custom machined.

low

Afar, Ethiopia; RETREAT,

Italy; Iceland

Plate Boundary Observatory, BARGEN, PANGA, Costa Rica

Numerous incl. GGN

Plate Boundary Observatory

TAMDEF, POLENET, Mauna Loa

Rio Grande, GGN

