Multipath characteristics of GPS signals as determined from the Antenna and Multipath Calibration System (AMCS): Preliminary results

P. Elosegui, K.-D. Park, J. Davis, J. Normandeau

Harvard-Smithsonian Center for Astrophysics

P. Jarlemark

SP Swedish National Testing and Research Institute

B. Corey, A. Niell MIT/Haystack Observatory

C. Meertens, V. Andreatta UNAVCO/UCAR Facility

- Description of the AMCS
- Some Preliminary Results
- Conclusions and Future Work

Park et al., (in preparation)

AMCS Accuracy Goal and Method

• **Goal**: Develop an *in situ* method for absolute calibration of site-dependent GPS phase-measurement errors such as scattering, multipath and unmodeled antenna phase variations ("SMA effects") with an accuracy of 1 mm (each frequency).

• Method: Form single phase differences between a GPS receiver connected to a GPS antenna to be calibrated and a second GPS receiver connected to an antenna free of SMA effects.

Components of the AMCS

- High-gain, multipath-free, 3-m diameter parabolic antenna
- GPS test antenna to be calibrated
- Two GPS receivers

Unique Strengths of the AMCS Method

- Current multipath reduction/calibration methods used include microwave absorber, relative field calibrations, anechoic chamber, mechanical robot, and data filtering.
- The AMCS enables us to accomplish three types of studies that are not possible with any other method:
 - In situ, absolute site calibration
 - Understand the sources of SMA effects, their dependence on weather and environment, and their time variability
 - Development and testing of improved antennas and understanding of site effects

Block diagram of the AMCS

Modes of Operation

- Zero-Baseline (ZBL) Calibration Mode
 - Both receivers collect data from the GPS test antenna
 - ZBL-mode data is processed to estimate a clock synchronization error and a phase offset of each satellite, which will be used in AMCS-mode data processing as fixed parameters
- AMCS Mode
 - Static (Calibration)
 - The parabolic antenna is stationary, pointing toward a certain direction, and the target GPS satellite drifts in and out of the antenna main beam

- Tracking

• The parabolic antenna tracks the target GPS satellite and its pointing direction is updated at each observation epoch

L₁ Phase Residuals (ZBL/AMCS-static)

Analysis of Residuals (ZBL/AMCS-static)

- ZBL-mode residuals: RMS ~0.5 mm
- AMCS-mode (static) residuals: RMS 1 3 mm
 - Highly systematic variations
 - Parabolic antenna pointing offset errors
 - Baseline error
 - Parabolic beam pattern errors
 - Low Signal-to-Noise Ratio (SNR) in the AMCS-mode data collection

AMCS-tracking Analysis

- Observing schedule:
 - 10-minute ZBL-mode
 - 10-minute AMCS-mode
 - Steer the parabolic antenna every 10 seconds
- Track the same satellite for several consecutive days
- Track different GPS satellites
 - Elevation angle: high, medium, and low
 - Azimuth angle: extensive coverage

L₁ Phase Residuals (AMCS-tracking)

Results of AMCS-tracking Analysis

- Effects are low-amplitude (~5 mm)
- Effects vary extremely rapidly in elevation angle
 - periodicity with variations of $\sim 1^{\circ}$ of elevation angle
 - periodicity is not very regular
- Effects are fairly repeatable from day to day but they can also vary by amounts large with respect to the AMCS measurement uncertainty of 1mm
- Effects are very sensitive to azimuth and time of day perhaps due to moisture on reflecting surfaces, temperature, or both.
- Amplitude variations of multipath effects are typically larger at lower elevation angles

Second GPS Test Antenna

Objective: are the observed effects due to multipath?

- Installed a second GPS antenna
 - Same antenna type and hardware
 - Reduced multipath environment
 - Microwave absorber

- Observations: 10 days in February 2002
- Compare phase residuals between GPS antennas

Second Test Antenna (cont'd)

- GPS antenna in higher multipath environment
 - Residuals are more repeatable from day to day
 - Larger amplitude variations
 - Larger signal amplitude at low elevation

- GPS antenna in lower multipath environment
 - Residuals are less repeatable from day to day
 - Smaller amplitude variations
 - Amplitude rather independent of elevation angle

Summary and Conclusions

- Description of AMCS
- ZBL-mode phase residuals are $\sim 0.5 \text{ mm}$ (RMS)
- AMCS-mode phase residuals
 - Measured absolute SMA effects
 - High spatial resolution (sub-degree)
 - Accuracy is $\sim 1 \text{ mm}$
 - SMA effects are:
 - Low-amplitude (~5 mm)
 - High-frequency (periodicity with variations of 1[°] elevation angle)
 - Fairly repeatable from day to day
 - Very sensitive to azimuth angle and time of day

Future Research and Calibration

• Open questions:

- How dependent are these effects on environmental conditions?
- Can an accurate and standard set of calibrations be obtained for a GPS site?
- What is the ultimate limitations that these effects place on the accuracy of (geodetic and geophysical) estimates obtained from GPS data?

• Quantitative answers:

- Construct a second, field deployable AMCS:
 - Side-by-side tests for accuracy assessment
 - Characterization of SMA effects at various GPS test sites
 - Deliberate introduction of SMA effects for model applicability
 - Time-series analysis of GPS analyses with/without SMA corrections