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Geometric model of the AMCS antenna
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Figure 1 Schematic representation of the (not to scale) geometry of the AMCS antenna model.

Figure 1 shows the geometric model of the “Andersen Manufacturing” AMCS
antenna, ie., the “Andersen 3.0-meter true focus paraboloid antenna with motorized
dual-drive azimuth-elevation mount and 360-degree azimuth travel” manufactured by
Andersen Manufacturing in Idaho Falls, Idaho, that has been operational at Haystack
since the Spring of 1999 (hereafter referred to as AMCS antenna). ŝs is the unit vector
in the hypothetical direction (elevation εs) of the GPS satellite. The wavefront, an
isophase plane, is perpendicular to ŝs. F is the point fixed to the antenna that the
AMCS phase differs by a constant phase only. The segment CD is parallel to ŝs and
represents the axis of revolution of the paraboloid. This axis does not intersect the
elevation axis, which is point E. The axis of revolution is offset from the elevation axis
by a distance CE, the “elevation axis offset”. Point E is the end view of the elevation
axis. Thus, the elevation axis is perpendicular to the page and allows rotations on the



plane of the page. The elevation axis is offset from the azimuth axis by a horizontal
distance EP, the “azimuth axis offset”. The azimuth axis contains the segment PA, is
on the plane of the page and allows rotations on a plane perpendicular to the page. All
the points on the azimuth axis are fixed relative to the ground. A plane that contains
the elevation axis and is perpendincular to the azimuth axis intersects the latter at P.
For convenience, we define P as the phase reference point of the AMCS antenna.

Geometric model of the AMCS baseline

Figure 2 shows the geometric model of the AMCS baseline. Red dots represent
the phase reference points of the GPS and the AMCS antennae. (The position of the
GPS antenna phase reference point is typically a few mm different between the L1 and
L2 wavelengths, and it is very dependent on the antenna-type used. The figure shows
only one GPS phase reference point for simplicity.) The baseline vector between the
antennae phase-reference points is b̄. The vector ā is the “true” vector reflected in the
AMCS phase difference that we must correct to the phase-reference point. The vectors
ā and b̄ are related by

ā = b̄+ c̄+ d̄+ ē+ f̄ (1)

where c̄ and d̄ are the azimuth and elevation axis offsets, respectively.
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Figure 2 Schematic representation of the geometry of the AMCS baseline model; perfect pointing.

Perfect AMCS pointing

Perfect AMCS pointing occurs when the AMCS antenna pointing direction and
the direction of the satellite are identical. Figure 2 illustrates this case. Vector ŝs is
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parallel to ē and f̄ and perpendicular to d̄. The AMCS phase delay is (distance units):

ŝs · ā = ŝs · (b̄+ c̄+ d̄+ ē+ f̄) = ŝs · b̄+ |c̄| cos εs + 0 + |ē|+ |f̄ | (2)

The term |ē| + |f̄ | is constant if we can assume that the instrumental delay of the
AMCS antenna system is independent of the antenna pointing position. Thus, this
delay is indistinguishable from a clock offset and is absorbed by the AMCS model term
that accounts for a constant phase offset between receivers.

“Deliberate” AMCS mispointing

For convenience, we can decompose any mispointing in its azimuth ∆φ and eleva-
tion ∆ε mispointing angles. Figure 3 shows the geometric model of the AMCS antenna
for a mispointing in elevation angle. The unit vectors ŝa and ŝs are the pointing direc-
tions of the AMCS antenna and the GPS satellite, respectively. The angle ∆ε = εa−εs
between the two unit vectors is the elevation mispointing angle. Similarly, an azimuth
mispointing angle ∆φ = φa − φs would lie on a plane perpendicular to the page and
is not plotted for clarity.
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Figure 3 Schematic representation of the geometry of the AMCS baseline model; mispointing
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The AMCS phase delay is (Appendix A):

ŝs · ā = ŝs · (b̄+ c̄+ d̄+ ē+ f̄)
= ŝs · b̄ + |c̄| cos εs cos ∆φ

+ |d̄| (sin εs cos εa − cos εs sin εa cos ∆φ)
+ (|ē|+ |f̄ |) (cos εs cos εa cos ∆φ+ sin εs sin εa)

(3)

Geometric model parameters and errors

Our current best estimates of these model parameters (baseline, azimuth and
elevation axis offsets, “antenna arm” and “focal distance”) are as follow: (1) baseline
vector b̄ components (∆e, ∆n, ∆u; in the sense AMCS phase center minus GPS phase
center) are: -20.820, 8.394 and -1.866 m for L1 and -20.820, 8.394 and -1.890 m for L2;
(2) azimuth axis offset |c̄| = 264 ± 5 mm; (3) elevation axis offset |d̄| = 50 ± 30 mm;
(4) antenna arm |ē| = 500 mm; (5) focal distance |f̄ | = 1 m. These parameters were
measured by Per and are based on estimates from a 24 hr run AMCS residuals (1),
ruler measurements (2), and eyeball (3), (4) and (5). The local survey should provide
improved values for all these parameters.

The comparatively short length of d̄ allows further simplification of (3) by mak-
ing use of the trigonometric formula sin(A − B) = sinA cosB − cosA sinB, and the
approximation cosA = 1 and sinA = A valid to first order in A for small angles,

|d̄| (sin εs cos εa − cos εs sin εa cos ∆φ) � |d̄| sin(εs − εa) = −|d̄| sin ∆ε = −|d̄|∆ε (4)

Note that the azimuth dependence has vanished from this term. The loss of accuracy in
expressing the mispointing |d̄|-term as in (4) is sub-mm. For example, if we consider
the case ∆ε = 0 (i.e., εa = εs = ε), then |d̄| (sin εs cos εa − cos εs sin εa cos ∆φ) =
|d̄| (sin ε cos ε (1 − cos ∆φ)), which for a given ∆φ has its maximum value at ε = 45◦.
At this elevation, the error introduced by not considering this term is below 1 mm
for ∆φ < 17◦, which is always true. (The half-power beam width of the AMCS
antenna is about 8◦.) On ther other hand, if we consider the case ∆φ = 0, then
|d̄| (sin εs cos εa − cos εs sin εa cos ∆φ) = −|d̄| sin ∆ε, which differs from |d̄|∆ε by less
than 1 mm for ∆ε < 29◦, which is always true. In summary, this simplification is
always accurate at the mm-level and the systematic error introduced by this elevation
axis offset term amounts to an error of the order of 1 mm per degree of elevation
mispointing offset.

The other terms in (3), namely the |c̄|-, |ē|- and |f̄ |-terms, cannot be gener-
ally simplified without loss of mm-accuracy. For example, at εs = 0, an approxi-
mation cos ∆φ = 1 in the |c̄|-term is below 1 mm only for ∆φ < 5◦. Note that
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this |c̄|-term presents no elevation mispointing dependence. As for the (|ē| + |f̄ |)-
term, if we consider the case εa = εs = 0◦, then (|ē| + |f̄ |) (cos εs cos εa cos ∆φ +
sin εs sin εa) = (|ē| + |f̄ |) cos ∆φ. At this elevation, an approximation cos ∆φ = 1 is
below 1 mm only for ∆φ < 2◦. On the other hand, if we consider the case ∆φ = 0,
and making use of the trigonometric formula cos(A − B) = cosA cosB + sinA sinB,
(|ē|+ |f̄ |) (cos εs cos εa cos ∆φ+ sin εs sin εa) = (|ē|+ |f̄ |) cos ∆ε, for which an approx-
imation cos ∆ε = 1 is below 1 mm only for ∆ε < 2◦.

Summary of the AMCS geometric model

From (2)-(4), the perfect pointing phase delay is,

ŝs · ā = ŝs · b̄+ |c̄| cos εs + 0 + |ē|+ |f̄ | (5)

and the mispointing phase delay is,

ŝs · ā = ŝs · b̄ + |c̄| cos εs cos ∆φ− |d̄|∆ε
+ (|ē|+ |f̄ |) (cos εs cos εa cos ∆φ+ sin εs sin εa)

(6)

By comparing (5) and (6), it can be seen that as a result of mispointing, an error
term arises that is proportional to:

|c̄| cos εs(1− cos ∆φ) + |d̄|∆ε+ (|ē|+ |f̄ |)(1− cos εs cos εa cos ∆φ− sin εs sin εa) (7)

These mispointing terms have to be included in the AMCS phase model. The system-
atic error introduced by the azimuth axis offset (term |c̄| in (7)) varies sinusoidally
with cosine of the satellite elevation angle from a value of 0 mm at εs = 90◦ to a
maximum value at εs = 0◦. At the latter elevation, this term reaches 1 mm level at
an azimuth mispointing offset ∆φ = 5◦, and increases thereof (Figure 4). This term
presents no elevation mispointing dependence. The systematic error introduced by
the elevation axis offset (term |d̄| in (7)) amounts to an error of the order of 1 mm
per degree of elevation mispointing offset (Figure 4). This term presents no azimuthal
mispointing dependence. The systematic error introduced by the (|ē| + |f̄ |) term in
(7), reaches 1 mm level at an elevation mispointing offset ∆ε = 2◦ when ∆φ = 0◦ and,
when ∆ε = 0◦, varies sinusoidally with the squared of the cosine elevation angle from
a value of 0 mm at εs = 90◦ to a maximum value at εs = 0◦. At the latter elevation,
this term reaches 1 mm level at an azimuth mispointing offset ∆φ = 2◦, and increases
thereof (Figure 4). For small (∆ε < 1◦) AMCS mispointing angles, (7) reduces to
|d̄|∆ε.

By construction, this antenna geometric model assumes that the azimuth axis is
vertical and the elevation axis is in a plane perperdicular to the azimuth axis. The
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Figure 4 Mispointing error after (7) for (left) ∆ε and εs = 0◦, and (right) ∆φ = 0◦.

model does not account for effects suchs as (elastic) deformation and/or wearing of
the antenna elements, nor includes phase variations due to the AMCS antenna phase
pattern. Two additional, related effects that need to be considered in modeling the
AMCS phase delays are “feed rotation” and atmospheric refraction.

Appendix A: AMCS mispointing phase delay

To derive (3), we express vectors ŝs, c̄, d̄, ē and f̄ in a local coordinate system.
For simplicity, we adopt a coordinate system where the z-axis is vertical, the x-axis
horizontal and the satellite lies in the x-z plane (e.g., Figures 2 and 3). The components
of the satellite unit vector in this coordinate system are

ŝs = (cos εs, 0, sin εs) (A− 1)

As for the antenna vectors, first we consider a mispointing angle in elevation and
then azimuth. The components of the antenna vectors in this local coordinate system
are

c̄′ = |c̄| (1, 0, 0)
d̄′ = |d̄| (− sin εa, 0, cos εa)

ē′ + f̄ ′ = |ē+ f̄ | (cos εa, 0, sin εa)
(A− 2)

where ′ refers to only elevation mispointing. To also account for an azimuth mispoint-
ing angle ∆φ = φa − φs, we give these primed antenna vectors a single right-handed
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rotation of angle ∆φ about the z-axis (a positive rotation being counterclockwise when
looking toward the origin from the positive axis) using

Rz(∆φ) =




cos ∆φ sin ∆φ 0
− sin ∆φ cos ∆φ 0

0 0 1


 (A− 3)

to obtain

c̄ = Rz c̄
′ = |c̄| (cos ∆φ,− sin ∆φ, 0)

d̄ = Rz d̄
′ = |d̄| (− sin εa cos ∆φ, sin εa sin ∆φ, cos εa)

ē+ f̄ = Rz(ē′ + f̄ ′) = |ē+ f̄ | (cos εa cos ∆φ,− cos εa sin ∆φ, sin εa)
(A− 4)

and the dot product of ŝs and these vectors are

ŝs · c̄ = |c̄| cos εs cos ∆φ
ŝs · d̄ = |d̄| (sin εs cos εa − cos εs sin εa cos ∆φ)

ŝs · (ē+ f̄) = (|ē|+ |f̄ |) (cos εs cos εa cos ∆φ+ sin εs sin εa)
(A− 5)

as used in (3).
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