

Intuicom®

User Guide

Intuicom, Inc. 1880 S Flatiron Court Boulder, CO 80301 (303) 449-4330 www.intuicom.com

This manual is for use by purchasers and other authorized users of the Intuicom Products. No part of this document may be reproduced or transmitted in any form or by any means, electronic or mechanical, or for any purpose without the express written permission of Intuicom Inc.

© 2000 - 2004 Intuicom Incorporated. All rights reserved.

Intuicom reserves the right to make changes to this manual without notice. Unless otherwise agreed to in writing, Intuicom assumes no responsibility or liability for the use of this manual or for the infringement of any copyright or other proprietary right and Intuicom shall deem nothing contained in this manual a warranty or guarantee.

Intuicom, WiGate, Nav-Link, TargeTracker, Intuicom Communicator, Intuicom SmartGPS Tracker/Surveyor, Intuicom SmartGPS Navigator, Intuicom Navigator II and Intuicom Communicator II are trade names of Intuicom, Inc.

Other product names mentioned in this manual may be copyrights, trademarks, or registered trademarks of their respective companies and are hereby acknowledged.

Revision 1.0d i © 2004 Intuicom Inc.

This product is licensed by The United States. Diversion contrary to U.S. law is prohibited.

Shipment or re-export of this product outside of The United States may require authorization by the U.S. Bureau of Export Administration. Please contact Intuicom, Inc. for assistance and further information.

Revision 1.0d ii © 2004 Intuicom Inc.

Table of Contents

1	Prod	luct Overview	1
	1.1	Communicator II roles in Intuicom Wireless Data Networks	1
2	Quic	k Start	2
3	Quic	k Start on a Multipoint System	3
	3.1	0) Set Operation Mode	3
		1) Set Baud Rate	
		3) Edit Radio Transmission Characteristics	
	3.4	4) Edit Multipoint Parameters	3
4		ing Transceiver Performance	
5	Oper	ration Mode Selections (Main Menu Option 0)	6
		(0) Point-to-Point Master	
	5.2	(1) Point-to-Point Slave	7
	5.3	(2) Point-to-Multipoint Master	7
		(3) Point-to-Multipoint Slave	7
		(4) Point-to-Point Slave/Repeater	
		(5) Point-to-Point Repeater	
	5.7	(6) Point-to-Point Slave/Master Switchable	8
		(7) Point-to-Multipoint Repeater	
		TDMA (If TDMA firmware option installed)	11
	5.10	(F) Ethernet options	11
6		tipoint Operation	12
	6.1	Theory of Operation	12
	6.2	Installing Multipoint Systems	12
		Overlapping Multipoint Systems	
	6.4	Setting Multipoint Parameters (Main Menu Option 5)	13
	6.4.1	\	
	6.4.2	\	
	6.4.3	Master Packet Repeat in Multipoint Systems with Repeaters	14
	6.4.4	(2) Max Slave Retry and (3) Retry Odds	15
	6.4.5		
	6.4.6	(5) Repeater Frequency	16
	6.4.7	(6) NetWork ID	16
	6.4.8	• • • • • • • • • • • • • • • • • • • •	16
	6.4.9		
	6.4.1	\	
	6.4.1	() 6	
	6.4.1	2 (C) Subnet ID	18
	6.4.1	3 (D) Radio ID	20
7		d Rate (Main Menu Option 1)	
		(0-9) Set Baud Rate	
	7.2	(A) Data Word Length and Parity	22

	7.3	(B) ModBus RTU	22
	7.4	(C) RS232/485	22
	7.5	(D) Setup Port	23
	7.6	(E) Turn on/off delay	23
	7.7	(F) Flow Control	
8	\mathbf{C}	all Book (Main Menu Option 2)	25
	8.1	Entering or Modifying numbers in the Call Book	26
	8.2	Programming the Call Book to Use 3 or 4 Repeaters	26
	8.3	Programming The Call Book in Multipoint Systems	28
9	R	adio Parameters (Main Menu Option 3)	29
	9.1	(0) FreqKey	29
	9.2	(0) Hop Table Version	
	9.	2.1 (1) Hop Table Size	
	9.	2.2 (2) Hop Freq Offset	31
	9.	2.3 (3) Frequency Zone	
	9.	2.4 Additional Frequency information for 2.4GHz transceivers	
	9.3	(1,2) Max Packet Size and Min Packet Size	
	9.4	(3) Xmit Rate	39
	9.5	(4) RF Data Rate	40
	9.6	(6) Slave Security	
	9.7	(7) RTS to CTS	
	9.8	(8) Retry Time Out	
	9.9	(9) Lowpower Mode	
	9.10	()	43
	9.11	\ / 1	
1(Radio Statistics (Main Menu Option 4)	
	10.1	0	
	10.2	8 8	
	10.3		
	10.4	J .	
	10.5	T	
11	Ĺ	TDMA Menu (Main Menu Option 6)	
12		Password (Main Menu Option 8)	48
	12.1		
	12.2	0 0	
	12.3	O	
13		Transceiver Location	
14		Front Panel LEDs	
15		RS232 Pin Assignments	
16		Establishing Data Communication Links	
17		RS422 and RS485 Operation	
18		Other Settings	
	18.1		
	18.2	Setup Timeout	59

Communicator II User Guide

19	Technical Specifications	60
19.1	l 900 Mhz Band Communicator II	60
19.2	2 2.4 Ghz Band Communicator II	62
20	Enclosure Mechanical Drawing	64
21	FCC Notification	65
22	Warranty	66

List of Tables

Table 4-1: Serial Settings to access Setup Menu	4
Table 5-1: Mode 6 Commands	9
Table 6-1: Subnet ID Settings for example Multipoint Subnet Diagram	19
Table 7-1: Data word length and parity selections	22
Table 7-2: Data port protocol selections	23
Table 7-3: Setup port selections	23
Table 7-4:Flow control selections.	24
Table 9-1: Frequency Bands 900 Mhz	31
Table 9-2: Frequency Bands enabled or disables using Frequency Zones	32
Table 9-3: Frequency Band Selection 2.4 Ghz	35
Table 9-4: 2.4 Ghz Frequency Zones	36
Table 9-5: 2.4 Ghz Frequency Zone Requirements	36
Table 9-6: Min Packet Size Settings (Bytes)	
Table 9-7: Max Packet Size Settings (Bytes) RF Data Rate 2	39
Table 9-8: Max Packet Size Settings (Bytes) RF Data Rate 3	39
Table 9-9: Low Power Settings	42
Table 9-10: MCU Speed Settings	43
Table 14-1: LED Status in Point-to-Point Mode	50
Table 14-2: LED Status in Point-to-Multipoint Mode	50
Table 14-3: LED Status Legend	50
Table 15-1: Main RS232 Port Pinout.	51
Table 15-2: Diagnostics RS232 Port.	51
Table 15-3: Main Port Signal Definitions	52
Table 17-1: Main Port RS422 and RS485 Full Duplex Pinouts	58
Table 17-2: Main Port RS485 Half Duplex Pinout	58

Table of Figures

Figure 1-1: Intuicom Communicator II Front Panel	1
Figure 4-1: Setup Main Menu	5
Figure 5-1: Operation Mode Menu	
Figure 5-2: Call Book Menu	
Figure 6-1: Multipoint Parameters	15
Figure 6-2: Multipoint Subnet Diagram	19
Figure 7-1: Baud Rate and other items related to the data port	21
Figure 8-1: Call Book Menu	26
Figure 8-2: Calling a Slave Through 4 Repeaters	27
Figure 9-1: Radio Transmission Parameters Menu	29
Figure 9-2: Hop Table Parameters	30
Figure 9-3: Frequency Key and Hop Table Options 2.4 GhzError! Bookmark n	ot defined.
Figure 9-3: Frequency Key and Hop Table Options 2.4 GhzError! Bookmark n Figure 10-1: Radio Statistics Menu	
	44
Figure 10-1: Radio Statistics Menu	44 51
Figure 10-1: Radio Statistics Menu Figure 15-1: Communicator II Front Panel Figure 16-1: Point-to-Point no Repeater	
Figure 10-1: Radio Statistics Menu	
Figure 10-1: Radio Statistics Menu Figure 15-1: Communicator II Front Panel Figure 16-1: Point-to-Point no Repeater Figure 16-2: Point-to-Point with Repeater	
Figure 10-1: Radio Statistics Menu	
Figure 10-1: Radio Statistics Menu Figure 15-1: Communicator II Front Panel Figure 16-1: Point-to-Point no Repeater Figure 16-2: Point-to-Point with Repeater Figure 16-3: Point-to-Point with two Repeaters Figure 16-4: Point-to-Point with Slave/Repeaters	

1 Product Overview

Welcome to the Intuicom Communicator II License-Free Spread-Spectrum Wireless Data Transceiver. The Intuicom Communicator II can be used in a wide variety of roles to wirelessly enable the flow of data to and from serial devices. Communicator II transceivers can be operated in straightforward point-to-point or point-to-multipoint networks or in conjunction with Intuicom Navigator II transceivers for highly functional Adaptive Multipoint networks combining multiple serial ports and optional integrated GPS.

This User Guide covers basic setup and configuration of Intuicom Communicator II transceivers and focuses on the most common mode of operation: Point-to-Multipoint.

Figure 1-1: Intuicom Communicator II Front Panel

1.1 Communicator II roles in Intuicom Wireless Data Networks

While an Intuicom *Navigator II* can be used as a Master or a Repeater in an Intuicom Multifunctional Adaptive Multipoint network, an Intuicom *Communicator II* often represents a less costly option when *Navigator II* features are not required in these roles.

For more information about Intuicom Wireless Networks with Navigator II transceivers, contact Intuicom.

2 Quick Start

When purchased as a pair the Intuicom® Communicator II Wireless Data Transceivers are shipped from the factory pre-configured to operate together in point-to-point applications. The Transceivers are preset for high-speed data communications and to communicate only with each other.

Intuicom Communicator IIs will potentially operate in virtually any environment where RS232 data communications occur. The transceivers function as a 9-pin null modem cable. If the Communicator II is to be used in an application where a null modem cable is used (such as communication between two computers), then the transceivers can be connected directly. If the transceivers are to be used to replace a straight-through RS232 cable, then a null modem cable or adapter must be placed between the transceiver and the DCE instrument to which it is connected.

To establish communications between a pair of Intuicom Communicator II Wireless Data Transceivers just received from the factory:

- 1. Set the baud rate on each transceiver to match the baud rate of the instrument to which it is attached. Please note that when you are setting the transceiver's baud rate you are setting its RS232 data rate, which must match the rate for the instrument to which it is attached. This in turn means that the baud rate does not have to be on the same setting for the two transceivers.
- 2. Verify that the RS232 connector on the cable supplied will fit the RS232 interface on the instrument to which it is being connected. The cable supplied will fit a 9 pin male RS232 connector; any other format will need an adapter or different cable.
- 3. Connect antennas to the transceivers. Any Communicator II transceiver may be operated without an antenna for bench top testing without concern for damaging the product.
- 4. Connect the transceiver to the instrument with the RS232 cable and attach the power adapter to the transceiver. Shortly after both transceivers are plugged in they should establish a communications link with each other and your connection is complete!

Note: The terms "Modem" and "Transceiver" are used interchangeably in this manual and in the text of the setup menu. While the words have different meanings, the two terms should be treated as one and the same for the purposes of use of the Intuicom product.

3 Quick Start on a Multipoint System

3.1 0) Set Operation Mode

Program one of the units to be a multipoint Master (Operation Mode 2)

Program the Multipoint Slaves (Operation Mode 3)

3.2 1) Set Baud Rate

Set the Baud Rate to match the baud rate of the device to which the transceiver will be connected.

3.3 3) Edit Radio Transmission Characteristics

Set FreqKey, Max Packet Size, Min Packet Size, and RF Data Rate to identical settings on every radio to be used in the network. It is always a good idea to set the FreqKey, Max Packet Size, Min Packet Size to values other than the factory defaults.

3.4 4) Edit Multipoint Parameters

Will there be a repeater in the network or do you intend to be able to run diagnostics on the network? If so set that value to 1.

Set the NetworkID to a value between 1 and 4095, a value of 255 enables the use of the callbook.

The rest is just fine-tuning.

4 Tuning Transceiver Performance

The Intuicom Communicator II allows you to tune several parameters to optimize its performance for your particular application. All adjustments are done through the Intuicom Communicator II setup interface, a user interface that eliminates the need for setup diskettes, DIP switch settings, or custom software.

The setup program is invoked by connecting the Communicator II to any computer running a terminal program, setting the baud rate for that terminal program to 19200 baud, and putting the transceiver into setup mode (on most models this is done by pressing the Setup button). While any terminal program, which can be set to 19200 baud, will work, examples for this manual were generated using Symantec ProComm. You may connect to either the Main Data Port or the Diagnostics port.

Parameter	Setting
Baud Rate	19200
Data Bits	8
Parity	None
Stop Bits	1
Parity Check	None / Off
Carrier Detect	None / Off
Flow control	None

Table 4-1: Serial Settings to access Setup Menu

When the setup program is invoked all three LEDs on the Communicator II front panel will turn green and will remain green for the entire time the transceiver is in setup mode. The main menu screen for the setup program is shown in **Figure 4-1**:

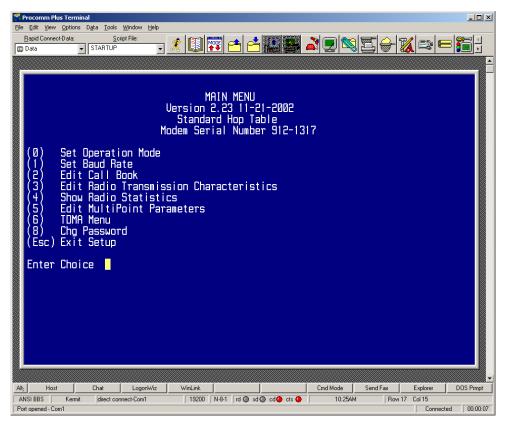


Figure 4-1: Setup Main Menu

The initial menu provides the transceiver's unique serial number, firmware version, and the set of choices for editing the operational parameters and viewing the performance data.

5 Operation Mode Selections (Main Menu Option 0)

When item (0) is selected the Operation Mode Menu appears as shown in **Figure 5-1**. The Operation Mode option is used to designate the method in which the particular transceiver will be used. The Communicator II operates in a Master to Slave configuration; therefore, any transceivers that are intended to operate together must be set up as such. In a point-to-point setup, either the master or slave may be used on either end of the communications link without any performance degradation. One consideration when setting up the transceivers is that a number of parameters are controlled by the settings in the master; therefore, you may wish to deploy the master on the communications end where you will have easier access to the transceiver.

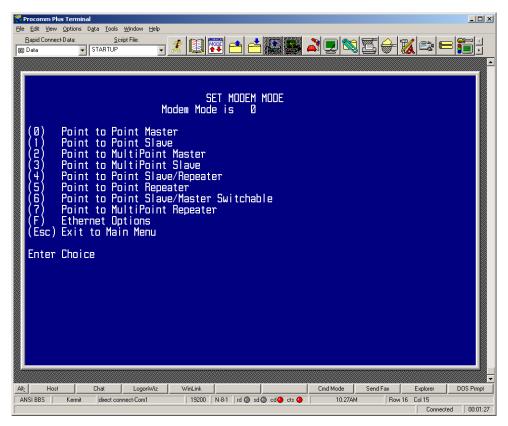


Figure 5-1: Operation Mode Menu

5.1 (0) Point-to-Point Master

As mentioned previously, the Communicator II transceiver operates in a Master/Slave configuration. When designated as a master in point-to-point mode, the Transceiver will call any or all slaves it is instructed to call in the Call Book. In Point to Point mode the master determines the settings used for most of the Radio Transmission Characteristics, regardless

of the settings in the slaves and/or repeaters. The settings for the slave and repeater(s) not determined by the master are RF Xmit Power, Slave Security, and Retry Time Out.

A quick method of identifying a master is to power up the transceiver. Prior to establishing a communication link with a slave or repeater all three of the master's LEDs will be solid red.

5.2 (1) Point-to-Point Slave

When set up as a point to point slave a Communicator II transceiver will communicate with any master in its call book, either directly or through up to four repeaters. When functioning as a slave, the Entry to Call feature in the transceiver's call book **Figure 5-2** is not operational. The slave will communicate with any master listed in its Call Book that calls it.

5.3 (2) Point-to-Multipoint Master

The Communicator II transceiver may be set to run in Multipoint mode, which allows one master to simultaneously be in communication with numerous slaves. A Point-to-Multipoint Master will communicate only with other transceivers designated as Point-to-Multipoint Slaves or Point-to-Multipoint Repeaters.

Please refer to the next chapter 'Multipoint Operation', for more information on running a Multipoint network.

5.4 (3) Point-to-Multipoint Slave

Setting (3) allows the transceiver to operate as a slave in a Multipoint network.

Please refer to the next chapter - 'Multipoint Operation' for more information on running a Multipoint network.

5.5 (4) Point-to-Point Slave/Repeater

Option 4 allows you to designate the transceiver to act as either a slave or a repeater, depending upon the instructions received from the master for the specific communications session. When a transceiver is placed in an ideal location, this setting offers the flexibility of using that transceiver as an end point in the communication link (slave) or to extend the link to a point further (repeater). These functions are not, however, available simultaneously (the transceiver cannot act as both a slave and a repeater at the same time). This option is available in point to multipoint operation.

A word of caution: A transceiver designated as a repeater has no security features, as explained below. When a transceiver is designated as a Point-to-Point Slave/Repeater, it will allow any master to use it as a repeater.

5.6 (5) Point-to-Point Repeater

The transceivers allows the use of up to four repeaters in a point to point communications link, significantly extending the operating range. When designated as a repeater a Transceiver behaves as a pass-through link. All settings for the call book, baud rate, and radio transmission characteristics are disabled. A repeater will connect with any master that calls it (the repeater must still be set up in the master's call book).

The use of one repeater in a communications link will reduce the top data throughput available when compared to a direct master to slave link (generally on the order of 50%). This impact is generally noticed only when using the Transceivers at 115.2 KBaud. The throughput does not decrease further if two or more repeaters are used.

For more information of programming point-to-point links using one or more repeaters please refer to *Entering or Modifying numbers in the Call Book*.

5.7 (6) Point-to-Point Slave/Master Switchable

Mode 6 is a versatile option that allows the transceiver to be controlled entirely through software commands. When in mode 6, a number of key parameters in the transceiver's user interface may be changed either directly (as if using the Terminal program) or through the use of script files. In addition, when the transceiver is in mode 6 and not calling a slave it will be a slave itself and accept any appropriate calls from other transceivers.

In mode 6:

- This mode only works through the data port with diagnostics turned off.
- The transceiver remains in slave mode until called by another Transceiver in its Call Book or instructed to call another transceiver through an AT command. The master will disconnect when DTR goes low.
- The user may change settings in the user interface without using the setup button (this may be of particular value if the transceiver is not in an easily accessible location).
- Predetermined script files may be used which allow any of the transceiver's settings to be changed upon execution of that file. This, in turn, allows the user to establish push button command sets that will instruct the Transceiver to call a predetermined slave.

Note: All AT commands issued to the transceiver in Mode 6 must be in ALL CAPS

Script File Command	Function Controlled		
ATXF_	Frequency Key		
ATXT_	Max Packet Size		
ATXD_	Min Packet Size		
ATXX_	Transmit Rate		
ATXR_	XR_ RF Data Rate		
ATXP_	RF Transmit Power		
ATDT_ Position in Call Book to Call			
ATD_ Allows specific Intuicom Communicator II serial			
	number to be entered to call		
ATXC_	Used in conjunction with the ATD command, instructs		
	transceivers which repeater path to follow		
ATXS	S Instructs Transceiver to go into Setup Mode		

Table 5-1: Mode 6 Commands

Using Mode 6 to call a transceiver not listed in the Call Book:

Mode 6 will accept the command ATD###### where ###### is any arbitrary modem serial number such as 5551234. Upon receipt of this command the modem will call that modem even though the number is not in the sending modem's Call Book.

Using Mode 6 to call a transceiver through one or two repeaters:

In conjunction with the ATD command the transceiver may be instructed to use the repeater(s) specified in the Call Book. This means it is possible to call an unlimited number of slaves through script files in mode 6 and have up to 10 different repeater combinations.

To call a transceiver through one or two repeaters:

The repeaters to be used must first be set up in the Call Book. This would be done by setting up a number to call (this may be a dummy number) through the repeater(s) which you wish to use. An example of this is shown below as entries 3 (one repeater) and 4 (two repeaters) in the Call Book.

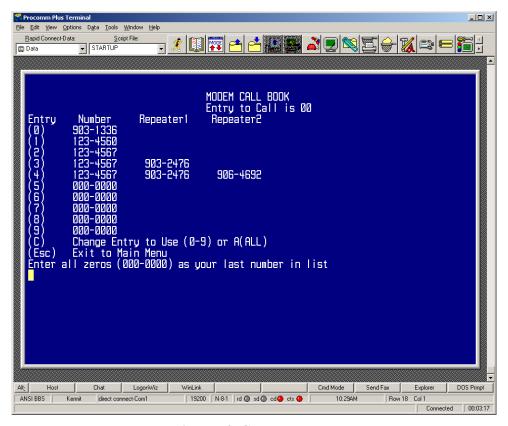


Figure 5-2: Call Book Menu

Issue the command ATXC# where # corresponds to the position in the Call Book where the repeater(s) is/are located.

Issue the command ATD###### where ###### is the serial number of the transceiver with which you are attempting a link. The transceiver will link first to the repeater(s) specified and then to the slave transceiver.

If you wish to link to a different slave, this time without using a repeater, it is imperative that you reissue the ATXC# command. Either:

- 1. Issue the command to a location in the Call Book with no repeaters. In the Call Book above, for example, this could be ATXC2; or
- 2. Issue the command ATXCA, where A corresponds to All and no repeaters will be used.

The Slave security may be disabled so that a modem operating as a slave (Modes 1,4, and 6) will connect to any modem calling it regardless of whether the calling modem is in the slave's Call Book. This feature is necessary when there are more than 10 transceivers which

may call into a slave and will allow any of the units in the system to call in. For more information please see Slave Security in Section x-x.

5.8 (7) Point-to-Multipoint Repeater

Setting (7) allows the transceiver to operate as a repeater in a Multipoint network.

Please refer to the next chapter, 'Multipoint Operation', for more information on running a Multipoint network.

5.9 TDMA (If TDMA firmware option installed)

Please contact Intuicom for more information about the TDMA operation mode firmware option.

5.10 (F) Ethernet options

This menu is only needed for Ethernet modems. Although this menu is included here, it has nothing to do with the Modem Mode (for example, if the modem mode is "0", entering "F" doesn't change the Modem Mode to "F"). Please see the Ethernet addendum for more information on this menu.

6 Multipoint Operation

6.1 Theory of Operation

In a Multipoint system a transceiver designated as a master is able to simultaneously be in communication with numerous slaves. In its simplest form, a Multipoint network functions with the master broadcasting its messages to all slaves and slaves responding to the master when given data by the device connected to the RS232 port.

It is important to note the differences between point-to-point and multipoint systems. In a point-to-point system all packets are acknowledged, whether sent from the master to the slave or from the slave to the master. In a multipoint system outbound packets (those sent from the master or repeater out to slaves or other repeaters) are sent a fixed number of times (see Master Packet Repeat). The receiving transceiver (slave or repeater) will accept the first packet received that passes the 32 bit CRC, however the packet is not acknowledged. On the return trip (data going back to the master) all packets sent are acknowledged or retransmitted until they are acknowledged. Therefore, the return link in a multipoint system is generally very robust.

Traditionally, a Multipoint network is used in applications where data is collected from many instruments and reported back to one central site. As such, the architecture of such a system is completely different from point-to-point applications. The theoretical maximum number of slaves that can be configured into a Multipoint network is a function of the data throughput needed from each of the slaves. For example, if the network will be polling slaves once a day to retrieve sparse data, several hundred slaves could be configured to a single master. If, on the other hand, each slave will be transmitting data at greater levels then fewer slaves may be connected to the master (the overall system will be closer to capacity with fewer slaves). The theoretical limit of a Multipoint system is influenced by the following parameters:

- 1. Size of the blocks of data. The longer the data blocks the smaller the system capacity.
- 2. RS232 baud rate.
- 3. The amount of contention between slaves.
- 4. Use of repeaters. A single repeater in a Multipoint network will decrease overall system capacity by 50%; more than one repeater does not further decrease network capacity.

6.2 Installing Multipoint Systems

When installing multipoint systems it is important that some planning is done up front. Unlike point-to-point systems (where the master will set certain system parameters), a multipoint system requires that many parameters be set consistently on all transceivers in the system. This includes RF data rate, min and max packet size, number of repeaters, and frequency key.

Furthermore, if several independent multipoint systems are to be located in close proximity the planning becomes much more critical. In this scenario it becomes very important to include as much frequency and time diversity as possible through use of different frequency keys, min and max packet sizes, and frequency banks. Please contact Intuicom if you have any questions about the installation of multipoint systems.

6.3 Overlapping Multipoint Systems

Overlapping multipoint systems may be set up with Communicator II transceivers effectively providing a couple of key parameters are set correctly.

Overlapping multipoint systems are defined as systems using different masters which share or overlap in a specific geographic area. It may include collocation of units (generally repeaters) that are part of different systems.

When collocating multipoint systems it is critical that the following parameters are unique for each system:

- Network ID (unless using Call Book)
- Frequency Key
- Max Packet Size
- Min Packet Size

6.4 Setting Multipoint Parameters (Main Menu Option 5)

6.4.1 (0) Number Repeaters

In a Multipoint network it is critical for timing purposes to know whether or not there are repeaters in the network. Any transceiver that is used as a repeater essentially becomes a master to the slaves and other repeaters to which it is communicating. Therefore, the user must identify whether or not the network contains repeaters. This is done by assigning a value in parameter (0), Number Repeaters. The value should be 0 if there are no repeaters in the network and 1 if repeaters are present. This parameter must be set to the same value in all units in a Multipoint network (master, slaves, and repeater(s)).

6.4.2 (1) Master Packet Repeat

In point-to-point operation the transceivers acknowledge every data packet transmitted. In a Multipoint network, the slaves do not acknowledge transmissions from a master to the slaves. This is to prevent system overload. If the slaves acknowledged all data transmissions from the master in a large Multipoint system, then all system capacity would be spent having the master listen for acknowledgments from the slaves. Because the transmission is not acknowledged by the slaves 100% confidence does not exist that every slave has received every message from the master. To address this issue the user may modify option (1) Master Packet Repeat, assigning a value between 0 (the packet is

transmitted once) to 9 (the packet is transmitted 10 times). For networks with solid RF links, this parameter would be set at the lower end of the scale (0-1). If the network has some weak or marginal links it would be set toward the higher values. If a slave receives a good packet from a master more than once it will discard the repeated packets received. In addition, once a multipoint repeater receives a good packet from the master it will discard any of the repeated packets. In turn, the repeater will send the packet out (to the next repeater or to the slaves) the number of times corresponding to *its* Master Packet Repeat setting. For more information on this, see the next section, Master Packet Repeat in Multipoint Systems with Repeaters.

It is important to keep in mind that increasing the master packet repeat will not only increase the probability of a packet getting through, but will also increase latency in the system because each packet from the master or repeater is being sent more often. Therefore it is important to find the optimal mix between system robustness, throughput, and latency. In general a setting of 2 to 3 will work well for most systems.

6.4.3 Master Packet Repeat in Multipoint Systems with Repeaters

The Master Packet Repeat parameter must also be set in multipoint repeaters when they are used in a multipoint system. In a multipoint system a repeater looks like a master to a slave. Therefore, the repeater will send the packet out the number of times corresponding to its Master Packet Repeat parameter. If this parameter is set improperly the reliability of the overall system may be compromised. For example, assume the master's Master Packet Repeat parameter is set to 3, and the link between the master and repeater is robust. Now assume that the repeater's Master Packet Repeat is set to 0, resulting in marginal communications between the repeater and the slaves it is communicating with. The data communications between the master and those slaves communicating through the repeater will be marginal, because it is only as strong as the weakest link, which in this case is the link between the repeater and slaves.

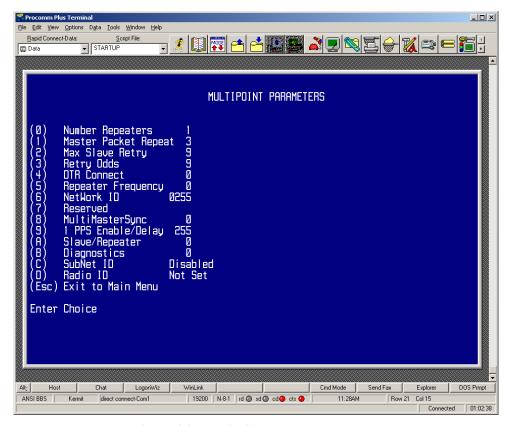


Figure 6-1: Multipoint Parameters

6.4.4 (2) Max Slave Retry and (3) Retry Odds

While packets transmitted from the master to the slaves in a Multipoint network are not acknowledged, packets transmitted from slaves to the master are. However, it is possible that more than one slave will attempt to transmit to the master at the same time, and it is therefore important that a protocol exists to resolve contention for the master between slaves. This is addressed through parameters (2) Max Slave Retry and (3) Retry Odds. The Max Slave Retry setting defines how many times (0 to 9) the slave will attempt to retransmit a packet to the master before beginning to use a back-off algorithm. Once the slave has unsuccessfully attempted to transmit the packet the number of times specified in Max Slave Retry it will attempt to transmit to the master on a random basis. The Retry Odds parameter determines the probability that the slave will attempt to retransmit the packet to the master; a low setting will assign low odds to the slave attempting to transmit and conversely a high setting will assign high odds. An example of how this parameter might be used would be when considering two different slaves in a Multipoint network, one close in with a strong RF link and the other far from the master with a weak link. It may be desirable to assign a higher Retry Odd to the slave with the weaker link to give it a better chance of competing with the closer slave for the master's attention.

When Retry Odds = 0 the slave will try to talk to the master the number of times specified in the Max Slave Retry parameter. If it is unsuccessful the slave will flash (purge) its RS232 input buffer.

6.4.5 (4) DTR Connect

Another parameter in a Multipoint network is (4) DTR Connect. When set at 1 the slave will connect to the master if it is free when the DTR line goes high on the 9 pin RS232 connector. In setting 2 the transceiver will accumulate data in its buffer and transmit in a burst when the buffer is full. This mode is valuable when a network has many low data rate devices and it is desirable to increase overall network capacity. In setting 0 the transceiver will transmit when RS232 data is received.

6.4.6 (5) Repeater Frequency

The repeater's hopping pattern must also be set in a Multipoint network; this is accomplished with parameter (5) Repeater Frequency. Setting this parameter is in contrast with point-to-point mode where the repeater automatically uses the master's hopping pattern. The repeater may be programmed to either use the master's hopping pattern (selection 0) or its own (selection 1).

Please contact Intuicom for more information regarding Repeater Frequency.

6.4.7 (6) NetWork ID

Option (6) NetWork ID allows multipoint networks to be established without the use of the Call Book. If the NetWork ID is set to any value other than the default (255) and no higher than 4095 the slaves in the multipoint network will communicate with the first multipoint master or repeater heard with the same NetWork ID. When the NetWork ID is used multipoint masters and repeaters may be replaced without reprogramming all of the slaves in the network. In addition, this allows a slave to establish communications with different Masters (though not at the same time) without having the serial numbers in the Call Book. This is very useful in mobile multipoint applications.

6.4.8 (8) MultiMaster Synch

(8) MultiMaster Synch is reserved for applications (either point to point or multipoint) with concentrations of Master units where it is necessary to reduce interference between the Masters. Please contact Intuicom for more information.

6.4.9 (9) 1 PPS Enable/Delay

The 1 PPS Enable/Delay option allows the radio network to propagate a GPS 1PPS signal from the master transceiver to all slaves in a multipoint network. When this parameter is properly enabled a 1 PPS pulse on the DTR pin of the master will provide a 1 PPS pulse on the CD line of any slave in the network.

To use the 1 PPS Enable/Delay feature the steps outlined below must be followed:

- 1. The 1 PPS Enable/Delay parameter in the master must be set to 0.
- 2. The master must have a 1 PPS pulse on the DTR pin.
- 3. The 1 PPS Enable/Delay parameter on the slaves must be enabled. The calibration on the slave is typically factory set. However, the slaves may also be calibrated with the following procedures:
 - a. Trigger an oscilloscope on the 1 PPS pulse (from a GPS receiver) on the DTR pin of the master.
 - b Monitor the CD line of the slave

If the timing on the slave differs from the master it may be adjusted via the value in the slave's 1 PPS Enable/Delay parameter. The difference in time between each incremental integer value is 542.534nS. Changing the parameter to higher values decreases the slave time delay and changing the parameter to lower values increases the time delay.

When properly calibrated the CD line of a slave radio will output a pulse that goes high for about 2 mS in synch with the 1 PPS pulse on the master radio. The output on the slave will occur within 20 microseconds of the input to the master.

Note: When 1 PPS is enabled the master <u>must</u> have a 1 PPS pulse on its DTR pin, otherwise the network will not function.

6.4.10 (A) Slave/Repeater

The Slave/Repeater mode allows a transceiver in a multipoint system to simultaneously act as a slave and a repeater. When in this mode a transceiver will repeat any packets sent from a master as well as send them out the RS232 port. Thus where 2 transceivers would be necessary previously (one to repeat and one to be a slave) only one is now needed.

To operate a transceiver as a multipoint slave/repeater you must set the operation mode to (7) Multipoint Repeater and then enable the slave/repeater option (setting of 1).

6.4.11 (B) Diagnostics

This option, when enabled, provides diagnostics data over a multipoint network simultaneously with the application data. Proper use of diagnostics requires the following:

- 1. Diagnostics must be enabled on the Master (set to 1)
- 2. A second serial port (or computer) to run the diagnostics software

3. Diagnostics software, available through Intuicom.

Please contact Intuicom if you are interested in using the diagnostics feature in your network.

6.4.12 (C) Subnet ID

In a Multipoint Network where the Network ID is used (instead of the Call Book) when a slave is initially powered it will connect with the first Repeater or Master that it hears with the same Network ID. Likewise, a repeater in the network, when initially powered up, will connect to the first master or repeater that it hears with the same Network ID.

In typical applications this approach works very well, however there are scenarios where you want to force communications to follow a specific path. For example, you may want to ensure that two repeaters in the system are communicating in series instead of in parallel, or it may be desirable to force slaves to communicate to specific repeaters for load balancing purposes.

There are two components to the Subnet ID:

Rcv Subnet ID. This setting identifies who a repeater or slave will listen to. **Xmit Subnet ID**. This setting identifies the sub network this device transmits on, and in turn which devices will listen to it. *The Xmit Subnet ID parameter is relevant for Multipoint Repeaters only*.

To disable the Subnet ID both Rcv Subnet ID and Xmit Subnet ID should be set to 'F'.

Note: The Subnet ID settings are irrelevant for the Master.

Note: The Master always transmits on Subnet ID=0, regardless of the setting. To force communications directly through the Master the Slave or Repeater's Rcv SubnetID must be set to 0.

Note: The Subnet ID works only in Multipoint Networks using NetworkID.

Note: In typical Multipoint Networks the Freq Key must be at the same setting for all transceivers. If the SubnetID is used the sub network may be set to a different Freq Key. **Note**: If both Rcv SubnetID and Xmit SubnetID are set to 0 the SubnetID will show **Roaming** in the menu. This setting will allow a mobile slave to roam from subnet to subnet within a network.

Figure 6-2 below depicts a Multipoint Network in which the Subnet ID is used to force communications along specific paths. In this example Repeater1 *must* talk directly to the Master, and Repeater2 *must* talk directly to Repeater1. Communications for Slaves 1, 2,

and 3 are forced along the direction of the solid lines, and Slave4 may link to the first Master or Repeater it hears.

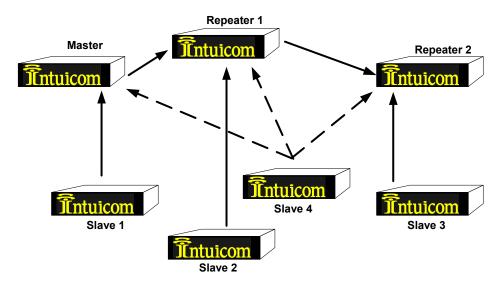


Figure 6-2: Multipoint Subnet Diagram

	Rcv	Xmit	
Transceiver	SubnetID	SubnetID	Notes
Master	NA	NA	May be set to anything
Repeater1	0	1	0 forces it to link only to the Master
Repeater2	1	2	Rcv SubnetID=1 forces communication through Repeater1 (Repeater1 transmits on SubnetID 1)
Slave1	0	NA	Rcv SubnetID=0 forces communication through the Master
Slave2	1	NA	Rcv SubnetID=1 forces communication through Repeater1
Slave3	2	NA	Rcv SubnetID=2 forces communication through Repeater2
Slave4	F	F	Setting of FF allows the Slave to link with the first Master or Repeater it hears with the correct NetworkID

Table 6-1: Subnet ID Settings for example Multipoint Subnet Diagram

Note: If you set the Rcv Subnet ID to '0', the modem (other than a master) will communicate only with a master. If you set both Subnet IDs to 'FF', the modem will communicate with any other modem in the same sub-network. Other than that, you can set any value for these settings.

6.4.13 (D) Radio ID

Option (D) allows a transceiver to be designated with an arbitrary, user selectable, 4 digit number which identifies the transceiver in the diagnostics mode.

7 Baud Rate (Main Menu Option 1)

7.1 (0-9) Set Baud Rate

When item (1) is selected you will be able to change the Transceiver's RS232 baud rate - the communication rate between the Transceiver and the instrument to which it is connected. It is important to note that this is independent of the baud rate for the other Transceiver(s) in the communication loop. For example, a Communicator II may be used in an application to send data from remote process instrumentation to an engineer's computer. In this application the baud rate for the Transceiver on the instrumentation might be set to 9600, and the Transceiver on the computer might be set to 57,600 or 115,200.

In general, it is desirable to set the baud rate to the highest level supported by the device to which it is connected. However, please note that this may actually result in slower data communications in certain circumstances (see the Troubleshooting section).

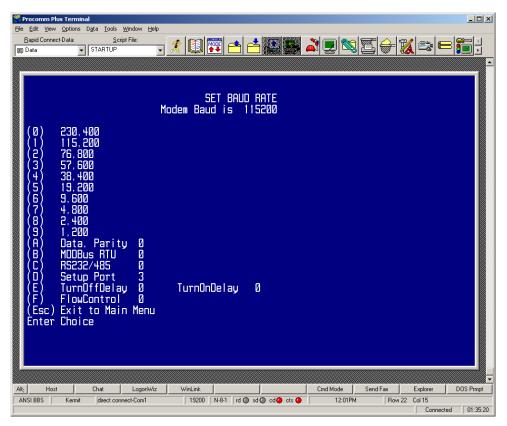


Figure 7-1: Baud Rate and other items related to the data port

The Baud Rate section of the user interface provides two other important parameters, the ability to change the transceiver's word length and to put it into ModBus RTU mode.

Revision 1.0d 21 © 2004 Intuicom, Inc.

7.2 (A) Data Word Length and Parity

There are six data word length and parity configurations available to be used with Intuicom Communicator II transceivers. The default setting is **0** (8,N,1) and is the most commonly used serial communications protocol.

Data word length and parity selections available:

Menu Setting	Data Bits	Parity	Stop Bits
0	8	None	1
1	7	Even	1
2	7	Odd	1
3	8	None	2
4	8	Even	1
5	8	Odd	1

Table 7-1: Data word length and parity selections

7.3 (B) ModBus RTU

Support for ModBus RTU protocol is available. The default setting for ModBus RTU is **0** (not enabled).

To enable the ModBus RTU mode:

- 1. In the **Set Baud Rate** menu enter **(B)** and then select **1**
- 2. In the Set MultiPoint Parameters menu, set Master Packet Repeat to 3.

Note: When using the transceivers in ModBus RTU mode the Master Packet Repeat <u>must</u> be set to 3 regardless of whether the transceivers are being used in Point to Point or Multipoint mode.

Note: The ModBus RTU mode must be selected in RS485 modems.

7.4 (C) RS232/485

In products for which the protocol of the Data port is software selectable (such as FGR09xx, FGR-115RC, FGR115W), use this menu to set the protocol of its data port. In TTL RF board products (FGR09Tx) and Ethernet products (FRG-115RE), this setting must be "0". The factory default setting is 0.

Menu		
Setting	Protocol	Notes
0	RS232	Use this for when embedded in Navigator II and
U	10232	for most applications.
1	RS422	
2	RS485	You must turn on ModBUS RTU mode. See
2	N3463	Section 17.
2	DOT	Special for the Department Of Transportation
3	1001	(1/2 duplex mode)

Table 7-2: Data port protocol selections

7.5 (D) Setup Port

The modem may be set-up using a terminal connected to the Main data port, or to the Diagnostic port. Use this menu to specify which port may be used for that purpose.

The two DB9 serial ports on the front of the transceiver are labeled "Main" and "Diag".

Menu Setting	Port	Notes
1	Main	The terminal is connected to the Main Data Port, in place of the device normally connected to it.
2	Diagnostics	The terminal is connected to the Diagnostic port.
3	Either one	The terminal may be connected to either port

Table 7-3: Setup port selections

This is set at the factory for the type of modem ('2' for DOT, '3' otherwise). It is suggested that this setting not be changed.

The Set-up Mode is invoked by sending a "U" (capital) to the Diagnostics port or by pressing the Set-up button on the front of the transceiver.

7.6 (E) Turn on/off delay

Use this menu to specify the time after the end (or before the start) of transmission of a character to the RS485 bus, when the modem stops driving the bus and releases the bus to other devices on it. The units are ¼ of a character (so, an entry of 4 means a delay equivalent to the duration of a full character). Default is zero delay.

7.7 (F) Flow Control

Use this menu to specify the hardware flow control for the Data port.

Menu Setting	Flowcontrol	Notes
0	None	Use software control (XON XOFF)
1	RTS	
2	DTR	

Table 7-4:Flow control selections

Default is 0 (no hardware flow control).

Note: Flow control is in effect while interacting with the setup menu. Be sure to match the configured flow control when accessing the setup menu.

8 Call Book (Main Menu Option 2)

The Call Book is an innovative feature in the Communicator II which offers both security and flexibility in use. The Call Book accomplishes this by allowing the user to determine with which other transceivers a given transceiver will communicate, based on the serial numbers for both the master and slave. The transceiver's serial number is encoded in the microprocessor and identified on the bottom label of the unit. The instructions provided in this section are for point-to-point mode only. Use of the Call Book for Multipoint systems is explained later in this chapter.

For two transceivers to communicate in point-to-point mode, three events must occur:

- 1. The serial number for the master must be listed in the slave's Call Book.
- 2. The serial number for the slave must be listed in the master's Call Book (if slave security is disabled)
- 3. The master must be programmed to call the slave.

As shown in **Figure 8-1**, the Call Book allows users to set up a list of up to 10 transceivers with whom they can communicate, designate up to 4 repeaters to be used in communicating with a given transceiver, and tell the master which slave to call. To direct the master to call a slave the user must be in the Call Book Menu. A specific slave may be called by entering C at the prompt, followed by the menu number corresponding to that slave. To call any available slave in the list the user should enter C and then A (for All).

Note: To call a slave through one or more repeaters you must call that slave directly (as opposed to using the Call All option). When Call All is selected the master is not able to connect with any slaves through repeaters. This is because the master calls every slave in the list when instructed to call all and will connect with the first slave to respond. When calling through a repeater, the master must first call that repeater and establish a communications link with it prior to making contact with the slave.

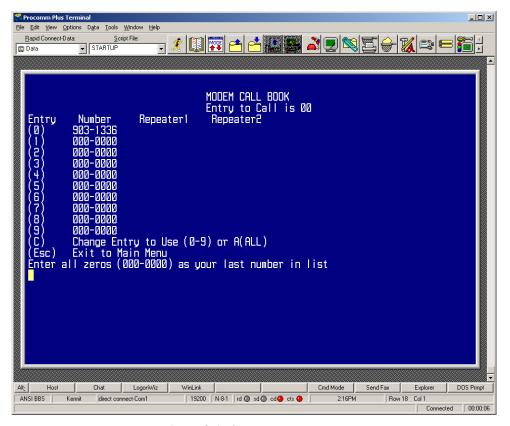


Figure 8-1: Call Book Menu

8.1 Entering or Modifying numbers in the Call Book

Entering or modifying serial numbers in the Call Book is a straightforward process. When in the Call Book menu enter the position number (0 - 9) you wish to edit. You will be prompted for the new number (formatting is automatic, you do not need to enter the dash). Once the number is entered (unless it is 000-0000) you will be asked for the number for the repeaters to be used. If no repeaters are to be used then enter the escape key; your entry will be complete and you will be back in the Call Book menu screen. If you enter a repeater number you will then be prompted for the number of the second repeater to use. If a second repeater is being used then enter the number at this time, if not then enter the escape key. Once again the modem will retain your entries, as shown in the updated Call Book menu screen.

8.2 Programming the Call Book to Use 3 or 4 Repeaters

In a point-to-point link the Communicator II can utilize up to 4 repeaters. To use 3 or 4 repeaters program the Call Book with the slave being called, followed by the first 2 repeaters being used (from the master calling out to the slave). In the next position in the Call Book enter 999-9999 as the number to call. When prompted for the repeaters enter the third and fourth repeaters in the link.

Figure 8 depicts a point-to-point link where a slave is called through 4 repeaters. In this example the master is calling the slave, 571-3872, through repeater 1, 901-1234, then repeater 2, 910-0234, then repeater 3, 571-3456, and finally repeater 4, 571-4567. Note that it is the entry of serial number 999-9999 in the position following the first two repeaters that instructs the master to continue calling through the repeaters programmed on that line.

Important: It is important that the Call Book slots (0 - 9) are filled sequentially beginning with 0, the first slot in the book. Serial numbers do not need to be entered in numerical order; however, there must not be any 000-0000 numbers in the middle of the list of good serial numbers. The reason for this is that when a master is instructed to Call All available slaves it will call all slaves listed until it reaches the first phone number of 000-0000. If a valid serial number is entered after the all zero number it will not be recognized as a valid number to call by the master.

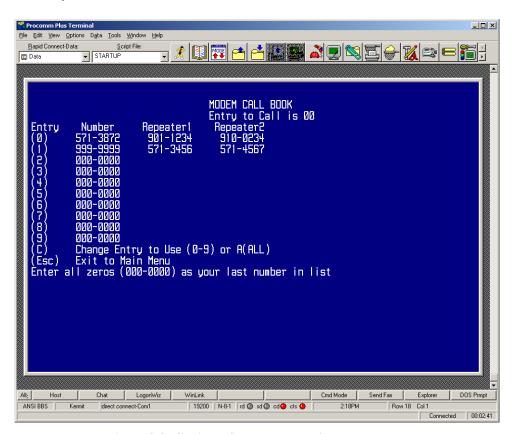


Figure 8-2: Calling a Slave Through 4 Repeaters

8.3 Programming The Call Book in Multipoint Systems

In a Multipoint system the slaves and repeaters are not listed in the master's Call Book. When establishing such a system, it is necessary only to have the master's serial number in each slave's and repeater's Call Book, and to have each repeater's serial number in the Call Book of each slave which may potentially communicate through it.

The following example shows the Call Books of a multipoint system comprised of a master, repeater, and slave in which the slave can communicate either through the repeater or directly to the master:

Multipoint Master Call Book (Unit Serial Number 555-0001):

Entry	Number	Repeater1	Repeater2
(0)	000-0000	-	-
(1)	000-0000		

No serial number entries are necessary in the master's Call Book The master's Call Book may be programmed to call any entry

Multipoint Repeater Call Book (Unit Serial Number 555-0002):

Entry	Number	Repeater1	Repeater2
(0)	555-0001		
(1)	000-0000		

Multipoint Slave Call Book (Unit Serial Number 555-0003):

Entry	Number	Repeater1	Repeater2
(0)	555-0001		
(1)	555-0002		
(2)	000-0000		

At times it may be desirable to force a slave to go through a specific multipoint repeater. If this is the case that slave's Call Book should contain only the serial number for the repeater in the upper left hand corner.

Note: If the network ID option is used no entries are needed in the Call Book of any of the transceivers in a multipoint system.

9 Radio Parameters (Main Menu Option 3)

When item (3) is selected in the main menu the screen in **Figure 9-1** appears, which allows the user to modify the radio transmission characteristics of the Transceivers. As stated in the warning, these parameters are for the sophisticated user who has a good understanding of the principles of radio data transmission. They should be changed only after consulting this manual.

In a point-to-point mode the radio parameters set in the Master will override the settings for the slave and repeater(s) in the link for all but RF Xmit Power, Slave Security, and Retry Time Out.

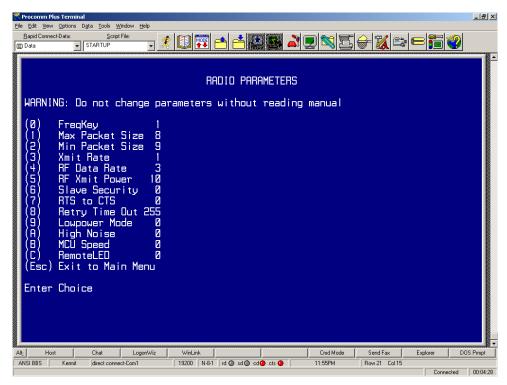


Figure 9-1: Radio Transmission Parameters Menu

9.1 (0) FreqKey

Selection (0) in the Radio Parameters menu allows the user to modify the hopping patterns of the transceivers to minimize the interference with other Communicator II transceivers in operation in the area. For instance, if there were 10 pairs of transceivers in operation within a factory or refinery, changing the Frequency Key would ensure that they would not jump onto the same frequencies at the same time for the same length of time.

There are 15 choices available for the Frequency Key (0-9 and A-E), representing 15 different pseudo-random patterns.

A selection of 'F' provides additional options to use different portions of the 902-928 MHz band.



Figure 9-2: Hop Table Parameters

9.2 (0) Hop Table Version

Entry 0 allows the user to choose the portion of the band in which the transceiver will operate. These choices are show in the table below:

Selection	Name	Band
0	Standard	Full 902-928 MHz
1	Australia	915-928 MHz
2	International	902-928 MHz, 16 fewer frequencies
		than full US set
3	Taiwan	916-920 MHz
4	New Zealand	921-928 MHz
5	Notch	Uses 902-928 with center frequencies
		of 911-919 notched out
6	Brazil	902-915 MHz

Table 9-1: Frequency Bands 900 Mhz

Note: Do NOT use Freq Key 14 (D) with the Australia (915-928MHz) hop table

9.2.1 (1) Hop Table Size

Within a specified band you may select the number of frequencies to be used, ranging from 50 to 112.

9.2.2 (2) Hop Freq Offset

The Hop Freq Offset option is not functional in the 900 MHz spread spectrum transceiver.

Note: Regardless of the Freq Key used, all transceivers in either point to point or point to multipoint networks must be set to identical Hop Tables and Table Size (number of frequencies).

9.2.3 (3) Frequency Zone

The idea of frequency zoning is to divide the available band (902 to 928 Mhz) into smaller bands, in this case 16 smaller bands consisting of 7 frequency channels. These 16 Zones are stored in a Word, which is made up of 16 bits numbered 0-15. These bits when displayed LSB to MSB directly represent the zones that the radio will operate on from the lowest frequency to the highest. A value of '1' in the bit sequence will instruct the transceiver to operate within the represented band. Similarly, a value of '0' value will instruct the transceiver to bypass the represented band. This feature should only be used with the standard hop table.

Binary Zone			
Number (LSB	Beginning Freq.	Ending Freq.	Number of
First)	(Mhz)	(Mhz)	Channels
0	902.2464	903.6288	7
1	903.8592	905.2416	7
2	905.4720	906.8544	7
3	907.0848	908.4672	7
4	908.6976	910.0800	7
5	910.3104	911.6928	7
6	911.9232	913.3056	7
7	913.5360	914.9184	7
8	915.1488	916.5312	7
9	916.7616	918.1440	7
10	918.3744	919.7568	7
11	919.9872	921.3696	7
12	921.6000	922.9824	7
13	923.2128	924.5952	7
14	924.2128	926.2082	7
15	926.4384	927.8208	7

Table 9-2: Frequency Bands enabled or disables using Frequency Zones

Frequency Zones are activated through the setup menu. To enable zoning from the main setup menu of the radio:

- 1. Select Menu 3 "Edit Radio Transmission Characteristics"
- 2. Select Option **0** "FreqKey"
- 3. Select F "For More"
- 4. Select Option **3** "Frequency Zone"

You will be prompted to activate/deactivate each zone in turn.

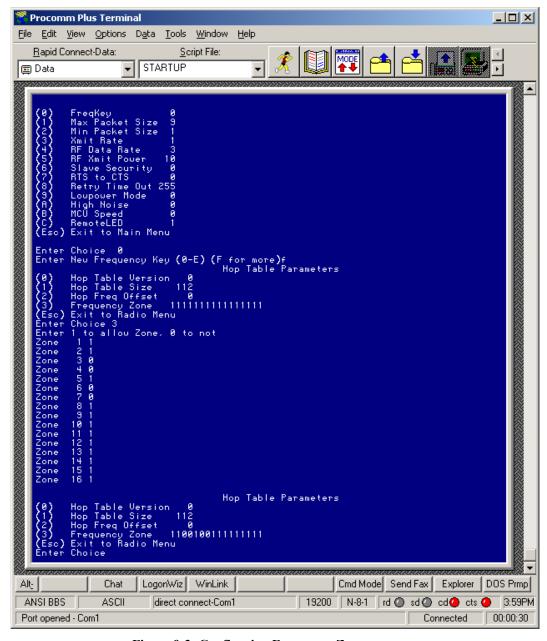


Figure 9-3: Configuring Frequency Zones

WARNING:

In order to stay within FCC regulations, it is required that a minimum of 50 separate frequency channels be used within a hop pattern. This means that a minimum of 8 frequency zones along with the Standard Hop Table must be select for legal communications.

9.2.4 Additional Frequency information for 2.4GHz transceivers

The Frequency Key for the 2.4 GHz Communicator II transceivers offers the ability to select more than just a different pseudo random hop table, but also the portion of the band that the transceiver will use. Because this feature offers the ability to select which portion of the spectrum will be used it is critical that all radios in a link, whether point-to-point or point to multipoint, use the same selections.

(0) Frequency Key Selections 0-E provide 15 different pseudo random hop tables, similar to the 900 MHz transceiver. A selection of 'F' allows the user to set the Hop Table parameters. The user is then presented with 3 additional choices

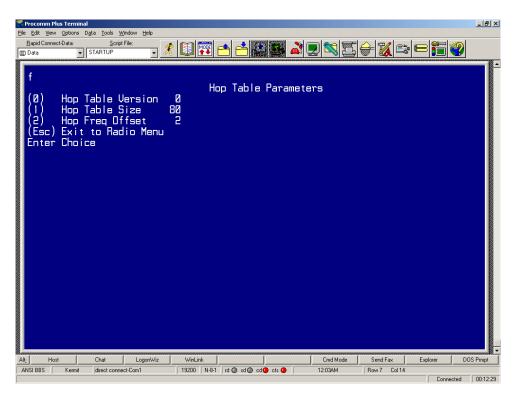


Figure 9-4: Frequency Key and Hop Table Options 2.4 Ghz

(0) Hop Table Version allows the user to determine which portion of the band to use:

Selection	Band Used
0	Entire band, 2.400 - 2.4835 GHz
1	Entire band, but offset frequencies from selection 0
2	Lower 1/3 rd of band
3	Middle of band
4	Upper 1/3 rd of band
5	2 outer 1/3 ^{rds} of band, avoids the middle

Table 9-3: Frequency Band Selection 2.4 Ghz

Thus, 2 networks could be set up side by side using the entire band without collisions by setting one network up with selection 0 and the second network with selection 1.

- (1) Hop Table Size allows the user to set the size (number of frequencies) of the hop table to use. The range available is from a minimum of 50 to a maximum of 80.
- (2) Hop Freq Offset allows the user to select a frequency offset, whereby the frequencies used are offset by 115.2 KHz from other frequency selections in the same portion of the band. For example, if 2 networks are operating side by side in the lower 1/3rd of the band using 50 frequencies, with one set to Frequency Offset of 0 and the other to Frequency Offset of 1, the frequencies used in the different hopping patterns will be offset by 115.2 KHz.

(3) Frequency Zone allows the user to set which portions of the band the transceiver will use. Setting a zone to 1 will include it in the hopping pattern, while setting a zone to 0 will exclude that particular zone from the hopping pattern. These settings are applies to the while band regardless of the Hop Table Version selected. If, for example, Hop Table version 2 is selected, the upper two thirds of the frequency zones will have no effect on the hopping pattern. Table 9-4 below shows the beginning and ending frequencies for each of the 16 zones.

Binary Zone		
Number (LSB	Beginning Freq.	Ending Freq.
First)	(Mhz)	(Mhz)
0	2400.3072	2405.4912
1	2405.4912	2410.6752
2	2410.6752	2415.8592
3	2415.8592	2421.0432
4	2421.0432	2426.2272
5	2426.2272	2431.4112
6	2431.4112	2436.5952
7	2436.5952	2441.7792
8	2441.7792	2446.9632
9	2446.9632	2452.1472
10	2452.1472	2457.3312
11	2457.3312	2462.5152
12	2462.5152	2467.6992
13	2467.6992	2472.8832
14	2472.8832	2478.0672
15	2478.0672	2483.2512

Table 9-4: 2.4 Ghz Frequency Zones

WARNING:

In order to stay within the EU 440 specifications, it is necessary to use the proper frequency zone combination based on the frequency offset. While using a frequency offset of zero, the first zone needs to be removed. Using frequency offsets of one or two the tow zone needs to be removed. See **Table 9-5** below.

Frequency Offset	Frequency Zone Requirements
0	0xxxxxxxxxxxxxxx
1	xxxxxxxxxxxxxx0
2	xxxxxxxxxxxxxx0

Table 9-5: 2.4 Ghz Frequency Zone Requirements

A zero (0) represents a required value. Any zone represented with an 'x' is user selectable.

(4) Government Rules sets the transceiver to comply with different government standards. Set the mode to comply with the correct regulations for the area in which the transceiver will be operated.

9.3 (1,2) Max Packet Size and Min Packet Size

Selections (1) and (2) allow the user to designate the size of the packets (in bytes) used by the transceiver in its communication link. This may be of particular value when using the Communicator II with different communications software packages; you may find that throughput is optimized when packet sizes are restricted by the transceiver. It should be noted, however, that in Point to Point modes the Max and Min Packet Settings will not have any material impact on throughput unless 115.2 KBaud is desired.

The combination of Max and Min Packet Size Settings determines the allocation of the communication link from the Master to the Slave and vice versa. With a given Max Packet Setting the master will transmit up to that number of bytes on every hop. If fewer than that number of bytes is transmitted the balance is allocated to the slave's transmission, in addition to the quantity in the Min Packet Size Setting.

Packet size is determined by a combination of the setting entered by the user and the RF Data Rate. **Table 9-6**, **Table 9-7**, and **Table 9-8** provide the packet sizes for each different combination of settings.

	Min Packet Size
Setting	RF Data Rate = 2
0	16
1	21
2	26
3	32
4	37
5	42
6	48
7	53
8	58
9	64

	Min Packet Size
Setting	RF Data Rate = 3
0	8
1	12
2	16
3	20
4	24
5	28
6	32
7	36
8	40
9	44

Table 9-6: Min Packet Size Settings (Bytes)

Min	Max Setting									
Setting	0	1	2	3	4	5	6	7	8	9
0	15	36	58	79	100	121	143	164	185	206
1	20	42	63	84	105	127	148	169	190	212
2	26	47	68	90	111	132	153	175	196	217
3	31	52	74	95	116	137	159	180	201	222
4	36	58	79	100	121	143	164	185	206	228
5	42	63	84	105	127	148	169	190	212	233
6	47	68	90	111	132	153	175	196	217	238
7	52	74	95	116	137	159	180	201	222	244
8	58	79	100	121	143	164	185	206	228	249
9	63	84	95	127	148	169	190	212	233	254

Table 9-7: Max Packet Size Settings (Bytes) RF Data Rate 2

Min	Max Setting									
Setting	0	1	2	3	4	5	6	7	8	9
0	8	24	40	56	72	88	104	120	136	152
1	12	28	44	60	76	92	108	124	140	156
2	16	32	48	64	80	96	112	128	144	160
3	20	36	52	68	84	100	116	132	148	164
4	24	40	56	72	88	104	120	136	152	168
5	28	44	60	76	92	108	124	140	156	172
6	32	48	64	80	96	112	128	144	160	176
7	36	52	68	84	100	116	132	148	164	180
8	40	56	72	88	104	120	136	152	168	184
9	44	60	76	92	108	124	140	156	172	188

Table 9-8: Max Packet Size Settings (Bytes) RF Data Rate 3

9.4 (3) Xmit Rate

There are two settings for the Transmit Rate parameter. For normal operation the transceivers should be set at Transmit Rate 1. Transmit Rate 0 is useful to qualitatively gauge signal strength. When set to Transmit Rate 0 the Transceivers will transmit data back and forth continuously, and the strength of the signal may be gauged by the Clear to Send LED. A solid red Clear to Send LED indicates a strong signal, the less the LED is on the weaker the signal.

Because the Transceivers transmit continuously when Transmit Rate is set to 0 (whether or not they have data to send) they use radio frequency spectrum unnecessarily. Therefore, in point-to-point operation, Transmit Rate 0 should be used only as a diagnostic tool and not for normal operation.

9.5 (4) RF Data Rate

The Communicator II has two settings for the RF Data Rate (not to be confused with the RS232 Baud Rate). Setting 2 should be used when the transceivers are close together and data throughput is to be optimized. Setting 2 must also be used when full throughput of 115.2 KBaud is necessary. Setting 3 should be used when the transceivers are farther away and a solid data link is preferred over data throughput.

Note: When using the transceivers in Multipoint mode, the RF Data Rate setting <u>must</u> be identical for all units in the system. Any transceiver with a different RF Data Rate than the master will not establish a communication link.

9.6 (6) Slave Security

With option 6 the user may disable the transceiver's security so it will accept a call from any other Intuicom unit. The default setting is 0 where security is enforced (the caller's serial number must be in the slave's Call Book), with a setting of 1 security is disabled.

As mentioned in mode 6, Slave Security must be set to one when the unit is operating in a point-to-point system where it may need to accept calls from more than 10 different transceivers. However, it is important to note that when Slave Security is set to 1 the Transceiver will accept calls from any other transceiver, and additional system security measures should be taken to prevent unauthorized access.

9.7 (7) RTS to CTS

Menu selection 7 in the Radio Parameters provides the option of allowing the RTS line (pin 7) on the Master modem to control the CTS line (pin 8) of the Slave. This pass-through control can be enabled in point-to-point mode as well as point-to-multipoint. In the latter the Master RTS line will control all Slaves' CTS lines. When this mode is enabled the CTS line ceases to function as flow control. Therefore it is not recommended to enable this feature when operating at RS-232 speeds above 38.4 kB.

To enable this mode, enter 7 in the Radio Parameters menu. An entry of 1 will enable the RTS-CTS control, 0 will disable it.

Just before the time the Master is scheduled to transmit a packet, it will sense the state of the RTS line. If the state has changed, the Master will then transmit a message to the Slave with the new status. This transmission will occur regardless of data to be sent or not. In the former case the RTS status message will be sent in addition to the data. In point-to-point mode the Master will continue sending the new status message until it receives an

acknowledgment from the Slave. In point-to-multipoint mode the Master will repeat the message the number of times equal to the Master Packet Repeat number in the Multipoint Setup menu.

Because the Master transmit time is completely asynchronous to the occurrence of any change of the RTS line, the latency time from RTS to CTS is variable. The maximum time, however, is determined by the frequency of Master transmission times. This frequency is determined by the Maximum Packet Size and Minimum Packet Size parameters in the Radio Parameter menu. Setting both parameters to their maximum of 9 and 9 will produce a maximum latency time of approximately 21 ms. At their minimum numbers the time will be approximately 5.9 ms. Please note that this latency can go up significantly if packets are lost between the Master and Slave. In point-to-multipoint mode there is no absolute guarantee that the state change will be communicated to all Slaves in the unlikely event that all repeated packets from the master do not get through to all Slaves.

Note: The RTS to CTS mode does not function in point-to-point links that contain a repeater. If this feature is needed in a link with a repeater you should use it in conjunction with point to multipoint mode.

9.8 (8) Retry Time Out

The Retry Time Out parameter allows the user to determine when a slave will drop a connection to a master or repeater in multipoint mode. The default setting is 255, meaning that if one packet in 255 from the master is sent successfully to the slave it will maintain a link. The lowest setting is 8, at which a slave will drop a connection much more quickly.

The Retry Time Out parameter is useful when a multipoint system is used with a moving master or slaves. As the link gets weaker, a lower setting will allow a transceiver to drop a link and search for a stronger connection.

While intended primarily for multipoint systems, the Retry Time Out parameter may also be modified in point to point systems. In point to point mode the Retry Time Out should not be set to a value of less than 151.

9.9 (9) Lowpower Mode

The Lowpower Mode is an option that, when enabled, allows the transceiver to function as a multipoint slave while consuming less power.

With a setting of 1 Lowpower Mode saves current consumption primarily by dimming the transceiver's LEDs. When set to higher values (2 through 63) the transceiver will sleep between slots. For example, at a setting of 2 the transceiver sleeps 1 out of 2 slots, at a setting of 3 the transceiver sleeps 2 out of 3 slots, and so on.

Note: 1) The Lowpower Mode is for use <u>only</u> in point to multipoint systems, and <u>only</u> on the multipoint slaves. The power savings occur when the option is enabled and the slave is connected to the master or a repeater. There are no power consumption savings when the slave is transmitting data back to the master. Designed primarily for SCADA systems, the Lowpower Mode is of little value when significant amounts of data need to be sent from the slave to the master.

- 2) Additional power savings may be realized when the number of repeaters is set to 1 throughout the network, even if no repeaters are being used. This is shown in the following table in the Drawl column, the Drawl column shows power draw with a setting of 0 repeaters.
- 3) Because the Lowpower mode puts the transceiver to sleep a latency will be introduced before it become fully linked to the master. This latency can range from 6 ms to 2.5 seconds.
- 4) To communicate to the RS232 port of a transceiver that is in Lowpower Mode the RTS line must be held high to wake it up. The transceiver will wake up within approximately 20 milliseconds or when CTS goes high.
- 5) If the RTS line on the slave is held high the transceiver will remain in normal operation regardless of the Lowpower Mode setting. Once RTS is dropped it will go back into the lowpower mode that corresponds to its setting.

The following table shows how the power consumption is reduced at different Lowpower Mode settings. The actual current draw depends an many factors, so the table gives only qualitative indication of savings of supply current. Set this setting to empirically, considering that a low number reduces latency, and a high number reduces current consumption.

Setting	Description		
0	Low-power disabled		Lliabor
1	LEDs dimmed, transceiver remains		Higher Current
	awake		3
2	LEDs dimmed, transceiver sleeps every		
	other slot		
3	LEDs dimmed, transceiver sleeps 2 of 3		
	slots		
4-63	LEDs dimmed, transceiver sleeps number		
	of slots corresponding to setting. For		Lower
	example, with a setting of 63 the		Current
	transceiver is sleeping during 62 of the	1	
	slots.		

Table 9-9: Low Power Settings

9.10 (A) High Noise

Use this menu to indicate if the modem will be operated in an environment with a high degree of radio noise and interference. With a setting of 1, the rejection of interference is improved, at the cost of reduced range and/or throughput.

9.11 (B) MCU speed

Use this menu to set the speed of the processor (Micro Controller Unit) in the Modem. The default setting is 0 (low speed).

Setting	Description	Notes
0	Low Speed	Reduces current consumption
1	High Speed	Required for 230 Kbaud Data Port rate

Table 9-10: MCU Speed Settings

10 Radio Statistics (Main Menu Option 4)

Option (4) in the main menu allows the user to view data transmission statistics that have been gathered by the Transceiver during the most recent session. This is of value when the user wishes to look at signal strength, noise levels, and the distance of the link between transceivers. Statistics are gathered during each data link and are reset when the next link begins.

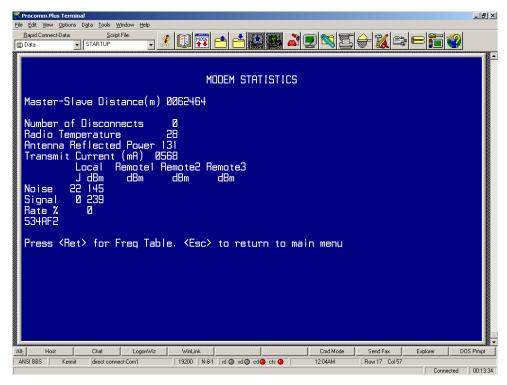


Figure 10-1: Radio Statistics Menu

Ideally, noise levels should be below 30, and the difference between the average signal level and average noise level should be 15 or more. High noise levels tend to indicate other sources of RF interference, while low signal levels indicate a weak link. The following sections provide information useful to the process of troubleshooting and improving radio links.

10.1 Average Noise Level

The average noise level indicates the level of background noise and interference at this modem and at each of the modems used as repeaters in the link. The number is an average of the noise levels measured at each frequency in the modems' frequency hop table. The individual measurement values at each frequency hop channel are shown in the frequency table. The frequency table is accessed by pressing the ENTER key on the computer when the radio statistics menu is displayed.

Average noise levels will typically fall in the range of 15 to 30. Average noise levels significantly higher than this are an indication of a high level of interference that may degrade the performance of the link. High noise levels can often be improved with bandpass filters, antenna placement or antenna polarization. Please contact Intuicom for more information.

10.2 Average Signal Level

The average signal level indicates the level of received signal at this modem and at each of the modems used as repeaters in the link. For each of these, the signal source is the modem that transmits to it. The number is an average of the received signal levels measured at each frequency in the modem's frequency hop table. The individual measurement values at each frequency hop channel are shown in the frequency table. The frequency table is accessed by pressing the ENTER key on the computer when the radio statistics menu is displayed.

For a reliable link, the average signal level should be at least 15 higher than the average noise level reading.

Low Average Signal Levels can often be corrected with higher gain antennas, antenna placement, and use of repeaters or use of antenna amplifiers. Contact Intuicom for more information.

Note, later revisions of the firmware show the signal level in RSSI units.

10.3 Overall Rcv Rate (%)

The Overall Rcv Rate measures the percentage of data packets that were successfully transmitted from the master to the slave on the first attempt without requiring retransmission. A number of 75 or higher indicates a robust link that will provide very good performance even at high data transmission rates. A number of 25 or lower indicates a weak or marginal link that will provide lower data throughput. An Overall Rcv Rate of 100% will provide approximately 100 Kbaud of bandwidth with an RF data rate of 3 (Radio Transmission Parameters Menu) and approximately 150 Kbaud of bandwidth with an RF Data Rate of 2. These numbers are reduced approximately 50% if there are one or more repeaters in the network

10.4 Number of Disconnects

If, during the course of performing a link test, the link between the master and the slave is broken, and the radios lose carrier detect, the occurrence is recorded in the Number of Disconnects value. The value indicates the total number of disconnects that have occurred from the time the link test started until the radio was put into reset mode. Under normal operating conditions, the number of disconnects should be 0. One or more disconnects may indicate a very weak link, the presence of severe interference problems or loss of dc power to any of the radios in the link.

10.5 Radio Temperature

The radio temperature value is the current operating temperature of the radio in degrees C (Celsius.) For proper operation, Intuicom Communicator II radio modems must be in the range of -40° to 75° C.

11 TDMA Menu (Main Menu Option 6)

Access to the TDMA operating mode and operating parameters requires TDMA enabled firmware. Please contact Intuicom for information about TDMA firmware.

The TDMA configuration parameters are covered in a separate manual: *Designing and Configuring TDMA Networks*.

12 Password (Main Menu Option 8)

CAUTION: If the password feature is enabled and you cannot remember the password the radio will need to be sent back to Intuicom to have the password disabled.

Option (8) in the Main Menu allows the user to set a password that will prevent access to changing of any of the radio's parameters. This option is useful if it is desirable to prevent unauthorized personnel from gaining access to the radio settings.

12.1 Setting a Password

To enable the Password feature choose (8) from the Main Menu. You will be prompted with

New PW? (<esc> to exit)

To back out of the process and not enable the password hit escape. To set a password type in **exactly 4 characters**. At any point in the process you can cancel by hitting the escape key. Once the 4 characters have been entered you will be prompted with:

<Enter> to accept, <esc> to quit

At this point if you wish to accept the password entered and enable the feature press the enter key. The password that you have chosen is displayed on the line above (please note that the password is case sensitive). To quit the process and not enable the password press escape.

12.2 Changing a Password

Once the password feature has been enabled it is possible to change to a new password. To enter a new password select (8) from the Main Menu. You will be prompted with "Enter Security Code" to enter the current password. Once the password has been entered correctly (it **is** case sensitive) you will be prompted to enter the new password. At any point this process may be cancelled by pressing escape.

12.3 Disabling a Password

The process to disable the password is similar to the process to change the password. However, when prompted to enter the new password the following procedure needs to be followed:

- 1. Hold down the Alt key and type 0255
- 2. Release the Alt key
- 3. Repeat this step 3 more times (hold Alt and type 0255 a total of 4 times).

13 Transceiver Location

Placement of your Intuicom Communicator II unit is likely to have a significant impact on its performance. In general the rule of thumb with a Communicator II is that the higher the placement of the antenna the better the communication link - height is everything! In practice you should also place the transceiver away from computers, telephones, answering machines, and other similar equipment. The included 6 foot RS232 cable will usually provide ample room for placement away from other equipment. To improve the data link Intuicom offers directional and omni directional antennas with cable lengths ranging from 3 to 200 feet.

When using an external antenna, placement of that antenna is critical to a solid data link. Other antennas in close proximity are a potential source of interference; use the Radio Statistics to help identify potential problems. It is also possible that slight adjustments in antenna placement (as little as 2 feet) will solve noise problems. In extreme cases, such as when the transceiver is located close to Pager or Cellular Telephone transmission towers, Intuicom offers band pass filters (a standard filter and a cavity filter) to reduce the out of band noise.

14 Front Panel LEDs

The LEDs on a Communicator II's front panel provide important information on the operation of the transceiver. Compare the status of a Transceiver's LEDs with the table below to aid you in the troubleshooting process.

	Master		Slave			Repeater			
Condition	CD	TR	CTS	CD	TR	CTS	CD	TR	CTS
Powered, disconnected	SR	SR	SR	SR	О	BR	SR	О	BR
Connected, no repeater, sending sparse data	SG	IF	IF	SG	IF	IF			
Master calling slave through repeater	SR	SD	SR	SR	0	BR	SR	О	BR
Master connected to repeater, not to slave	FO	SD	SR	SR	О	BR	SR	SD	SR
Repeater connected to slave	SG	IF	IF	SG	IF	IF	SG	IF	IF
Mode 6, disconnected	SR	О	BR	SR	О	BR			
Setup Mode	SG	SG	SG	SG	SG	SG	SG	SG	SG

Table 14-1: LED Status in Point-to-Point Mode

	Master		Slave		Repeater				
Condition	CD	TR	CTS	CD	TR	CTS	CD	TR	CTS
Powered, disconnected	SR	SD	О	SR	О	BR	SR	О	BR
Repeater and slave connected to master, no data	SR	SD	О	SG	О	SR*	SG	SD	SR*
Repeater & slave connected to master, master sending data to slave	SR	SD	О	SG	О	SR*	SG	SD	SR*
Repeater & slave connected to master, slave sending data to master	SG-SR	SD	IF	SG	IF	SR*	SG	SR	SR*

Table 14-2: LED Status in Point-to-Multipoint Mode

LEDs		
CD	Carrier Detect	
TR	Transmit	
CTS	Clear to Send	

LED Status		
BR	Blinking Red	
FO	Flashing Orange	
IF	Intermittent Flashing Red	
О	Off	
SD	Solid Red, Dim	
SG	Solid Green, Bright	
SR	Solid Red, Bright	

Table 14-3: LED Status Legend

15 RS232 Pin Assignments

Figure 15-1: Communicator II Front Panel

Pin	Assignment	Signal
1	Carrier Detect	Output
2	Transmit Data	Output
3	Receive Data	Input
4	DTR	Input
5	Ground (Signal/Power)	
6	+Vin	Input/Output
7	RTS	Input
8	Clear to Send	Output
9	N/C	

Table 15-1: Main RS232 Port Pinout

Pin	Assignment	Signal
1	N/C	N/C
2	Transmit Data	Output
3	Receive Data	Input
4	N/C	N/C
5	Ground	(Signal/Power)
6	+Vin (Power) optional	Input/Output
7	N/C	N/C
8	N/C	N/C
9	N/C	N/C

Table 15-2: Diagnostics RS232 Port

Signal Name	Definition
Pin 1: Carrier Detect (CD)	Used to show that there is an RF connection between modems.
Pin 2: Transmit Data (TX)	This is used to transmit data bits serially from the modem to the
	system device connected to the modem.
Pin 3: Receive Data (RX)	This is used to receive data bits serially from the system device to
	the modem device connected to the modem.
Pin 4: Data Terminal	The modem only uses this line in Point-to-Point Slave/Master
Ready (DTR)	switchable mode (refer to Operation Mode Selections) or for DTR
	Connect (refer to Multipoint Operation).
Pin 5: Ground (GND)	Signal return for all signal lines, power ground.
Pin 6: +Vin (Power)	Unit can be powered by applying +Vin on this pin.
Pin 7: Request to Send	The modem does not recognize RTS for flow control. RTS is used
(RTS)	as a control line in RTS/CTS mode (refer to Radio Transmission
	Parameters).
Pin 8: Clear to Send	This signal is used to tell the system device connected to the
(CTS)	modem that the modem is ready to receive data. When asserted,
	the modem will accept data, when de-asserted the modem will not
	accept data. This should always be used for data rates above
	38.4KB or there will be a risk of lost data if an RF link is not very
	robust.
Pin 9: N/C	

Table 15-3: Main Port Signal Definitions

16 Establishing Data Communication Links

The Communicator II's versatility allows data communication links to be established using a variety of different configurations. This, in turn, makes it possible to extend the range of the Communicator II and get around obstacles.

Figure 16-1 shows the most common and straightforward link, a master communicating to a slave in a dedicated link.

Figure 16-1: Point-to-Point no Repeater

Figure 16-2 depicts how a link might be set up using a repeater. The repeater may be sitting on a hilltop or other elevated structure to link the master to the slave. In this setup it may be desirable to use an external omni directional antenna on the repeater; to extend the range Yagi antennas could be used on either or both of the master and slave.

When a repeater is used the RF speed is cut in half, making 115 KBaud uncompressed throughput unachievable. The baud rate, however, may still be set at 115200.

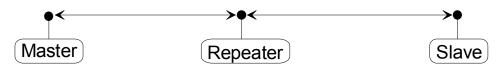


Figure 16-2: Point-to-Point with Repeater

Figure 16-3 shows a link with two repeaters between the master and slave. With two repeaters there is clearly more flexibility in getting around obstacles and greater total range is possible. Once again, it would be desirable to use external omni directional antennas with the repeaters, and attaching a Yagi to the master and slave would increase the range of the link.

When two repeaters are used there is no further degradation in the RF speed of the link.

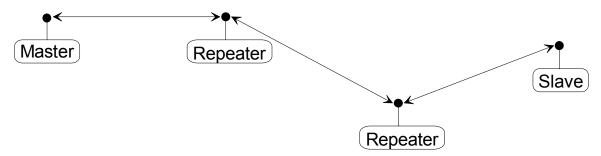


Figure 16-3: Point-to-Point with two Repeaters

In **Figure 16-4** a setup is shown where a master routinely calls a number of slaves at different times. The master is communicating with a transceiver designated as a slave/repeater that is connected to a remote instrument in the field. Since this instrument is placed in an elevated location, the transceiver may also be used as a repeater when it is not used as a slave. At any time desirable the master may call any of the slaves, establish a connection, and retrieve and send data.

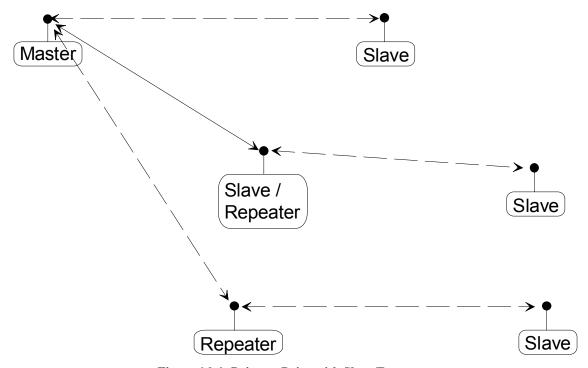


Figure 16-4: Point-to-Point with Slave/Repeaters

Revision 1.0d

Figure 16-5 depicts a standard point-to-multipoint system. In this example any data sent from the master is broadcast to all three slaves, one of which receives it through a multipoint repeater. The data is in turn sent out of the RS232 port of each of the three slaves.

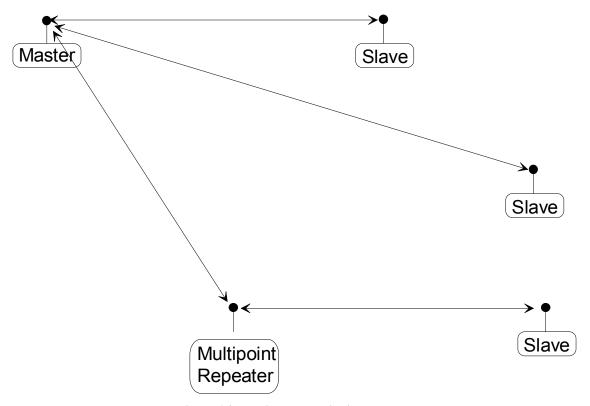


Figure 16-5: Point-to-Multipoint network

In **Figure 16-6** a point-to-multipoint system is depicted which uses one of the slave sites as a repeater simultaneously, all through the same radio. This system works in a manner very similar to a standard multipoint system with repeaters, however the number of radios needed is reduced with the use of the multipoint slave/repeater feature.

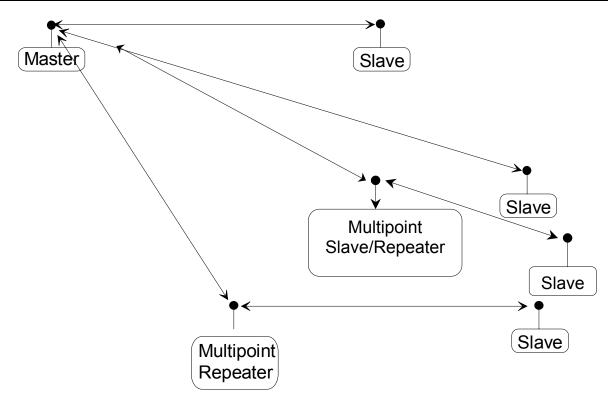


Figure 16-6: Point-to-Multipoint with Repeaters

17 RS422 and RS485 Operation

For both RS-422 and RS-485 the transceiver can drive 32 standard unit loads and loads the buss with only 1/8 unit load. This means the user can tie up to 256 devices on the buss if all of the line receivers have 1/8 unit load (different devices have different loads).

RS-422 is used for full duplex (4 wire) communication with one master and many slaves. The transceiver is the master unit and keeps the line driver asserted (in the on state) at all times. The maximum line length is 4,000 feet using a pair of 120 ohm twisted cables with a 5th wire for data common (neutral).

RS-485 full duplex (4 wire plus common) is the same as RS-422 except the system can have multiple masters on the buss.

The most common operation of RS-485 is a two-wire (single twisted pair, 120 ohm impedance) system. In this system the loading of the transceiver is as described above which allows up to 256 1/8 unit load units on the buss. Maximum line length is also 4,000 feet with a third wire required for data common. Before sending data the transceiver will check the line to be certain no other device is transmitting before it enables its line driver for data transmission.

When setting the modem to RS-485 for point-to-point mode you must turn Modbus on and set master packet repeat to 3 in both the master and slave radios. In point-to-multipoint you must turn Modbus on and set master packet repeat to 1 or more on all radios.

The "Turn off delay" time in the menu is used to control the length of time the transmitter driver stays asserted (on) after data transmission has finished. This is needed to allow the last transmitted character to reach the end of a long line (4,000 feet) and is normally set to one character length of time (four one quarter character times in the menu) at the selected baud rate. This time also allows 3 complete reflections to the end of the line to ensure the ringing on the line has fully dampened out before turning the buss over to another device. Shorter line lengths may use smaller delays if desired but four one-quarter-character delay times (one complete character) are recommended. A setting of zero delay time is not allowed as it causes internal timing errors.

There is no provision for hand shaking in any of the above modes of operation so fast data rates (57.6 K baud and above) are not recommended without a protocol that can handle error detection properly.

Function	DE-9 Pin Number
RX+	3
RX-	7
TX+	2
TX-	8

Table 17-1: Main Port RS422 and RS485 Full Duplex Pinouts

Function	DE-9 Pin Number
Wire to both pins for Buss +	Short 2 & 3
Wire to both pins for Buss -	Short 7 & 8

Table 17-2: Main Port RS485 Half Duplex Pinout

18 Other Settings

A number of parameters other those shown in the setup menu may be set on Intuicom Communicator II transceivers. The parameters below may be set with DOS based software available by contacting Intuicom.

18.1 Baud Rate

The transceiver's RS232 baud rate may be set to 300, 600, or 900 baud.

18.2 Setup Timeout

When enabled this mode invokes a timeout feature for the Setup Menu. If the transceiver goes into setup and does not receive a legitimate menu selection within 3 to 5 seconds it will go back out of setup and into its previous mode.

19 Technical Specifications

19.1 900 Mhz Band Communicator II

Specification	Value
Frequency:	902 to 928 MHz
Transmitter:	
Output Power	1 mW to 1 W (+30 dDm)
Range*	60 miles
Modulation	Spread Spectrum GFSK, 120 kBs – 170 kBs
Spreading method	Frequency hopping
Occupied Bandwidth	230 kHz
Receiver:	
Sensitivity	-108 dBm for 10 ⁻⁶ BER standard speed -111 dBm for 10 ⁻⁶ BER low speed -110 dBm for 10 ⁻⁴ BER standard speed -113 dBm for 10 ⁻⁴ BER low speed
Selectivity	20 dB at fc \pm 115 kHz
Selectivity	60 dB at fc $\pm 145 \text{ kHz}$
System gain	140 dB
Data Transmission:	
Error Detection	32 Bit CRC, resend on error
Forward error correction (low speed)	(24,12) Golay, retransmit on uncorrectable error
Data Encryption	Substitution, dynamic key
Max Link Throughput	115 Kbaud standard speed, 38.4 Kbaud low speed
Data Interface	RS-232/RS485 1200 Baud to 230.4 KBaud, asynch, full duplex
Power Requirements:	, , ,
Supply voltage	6 to 30 Vdc, 10 to 60 Vdc with HV option
Max Transmit current, for 1 W transmit power, low MCU speed	6 Vdc: 1 A 12 Vdc: 500 mA 30 Vdc 200 mA
Max Receive current, low MCU speed	6 Vdc: 110 mA 12 Vdc: 60 mA 30 Vdc 40 mA
Max Idle current, low MCU speed	6 Vdc: 30 mA 12 Vdc: 16 mA 30 Vdc 9 mA
Max Sleep current, low MCU speed	6 Vdc: 8 mA 12 Vdc: 5 mA 30 Vdc 2 mA
Operating Modes:	Point-to Point Point-to-Multipoint Peer-to-Peer Store and Forward Repeater
Operating Environment	-40°C - +75°C, 0 to 95% humidity non-condensing

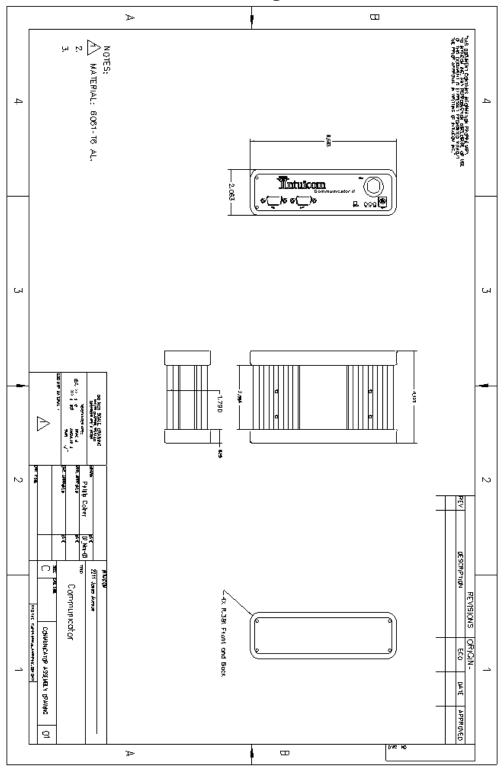
^{*} Line of sight distance with unity gain antenna ** Throughput measured assuming 75% frequency availability.

900 Mhz Part Number	FIP1-900C2M-R2	
Data Port	DB9 Female RS232	
Diagnostics Port	DB9 Female RS232	
Enclosure	Extruded aluminum with rubber bumpers	
Dimensions	52 mm H x 112mm L x 167mm W	
Weight	570 g	
Power Requirements	• 6-30 Vdc	
	 AC Wall Adapter Provided 	
	May also be powered through Pin 9	
	of Diag DB9 connector	
Antenna	N type female connector. External antenna	
	required.	
FCC Identifier	KNY21161341911919	
DOC Identifier	2329 102 336A	

19.2 2.4 Ghz Band Communicator II

Specification	Value
Frequency:	2.400 to 2.4835 GHz
Transmitter:	
Output Power	100 mW to 500 mW
Range*	20 miles
Modulation	GFSK, 115.2 Kbps or 153.6 Kbps
Occupied Bandwidth	230 kHz
Receiver:	
Sensitivity	-108 dBm at 10-6 raw BER
	20 dB at fc ± 115 kHz
Selectivity	60 dB at fc $\pm 145 \text{ kHz}$
System Gain	137 dB
Data Transmission:	
Error Detection	32 Bit CRC, Retransmit on Error
Data Encryption	Substitution, dynamic key
Link Throughput	115 Kpbs
Data Interface	RS-232/RS485 1200 Baud to 230.4 KBaud, asynch, full duplex
Power Requirements:	
Supply Voltage	9.5 – 30 VDC
	400 mA at 9.5 VDC
Transmit Current	320 mA at 12 VDC
	150 mA at 30 VDC
	130 mA at 9.5 VDC
Receive Current	100 mA at 12 VDC
	13 mA at 30 VDC
	37 mA at 9.5 VDC
Idle Current	30 mA at 12 VDC
	13 mA at 30 VDC
	8 mA at 9.5 VDC
Sleep Current	5 mA at 12 VDC
	2 mA at 30 VDC
	Point-to Point
Operating Modes:	Point-to-Multipoint
operating modes.	Peer-to-Peer
	Store and Forward Repeater
Operating Environment	-40°C - +75°C, 0 to 95% humidity non-condensing

^{* 5} dB omni at 2.4 GHz.


** Throughput measured assuming 75% frequency availability.

2.4 Ghz Part Number	FIP1-024C2M-R2	
Data Port	DB9 Female RS232	
Diagnostics Port	DB9 Female RS232	
Enclosure	Extruded aluminum with rubber bumpers	
Dimensions	52 mm H x 112mm L x 167mm W	
Weight	570 g	
Power Requirements	• 9.5 – 30 Vdc	
	 AC Wall Adapter Provided 	
	• May also be powered through Pin 9	
	of Diag DB9 connector	
Antenna	N type female connector. External antenna	
	required.	
FCC Identifier	KNY21161341911919	
DOC Identifier	2329 102 336A	

20 Enclosure Mechanical Drawing

21 FCC Notification

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions: 1) This device may not cause harmful interference and 2) this device must accept any interference received, including interference that may cause undesired operation.

This device must be operated as supplied by Intuicom, Inc. Any changes or modifications made to the device without the express written approval of Intuicom, Inc. may void the user's authority to operate the device.

CAUTION: Intuicom Communicator II Models with 902-928 Mhz wireless transceivers have a maximum transmitted output power of 955 mW, models with 2400-2485 Mhz wireless transceivers have a maximum transmitted output power of 500 mW. It is recommended that the transmit antenna be kept at least 23 cm away from nearby persons to satisfy FCC RF exposure requirements.

NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

22 Warranty

LIMITED WARRANTY TO END-USERS

Intuicom, Inc. 1880 South Flatiron Ct., Suite R BOULDER, CO 80301

- A. Standard Limited Warranty for Software Products. For Products that include a software license, INTUICOM makes a limited warranty to the End User that the software will perform substantially in accordance with the accompanying written materials and that the transfer media on which the Product is provided will be free from defects in materials or workmanship under normal use and service for a period of ninety (90) days from the date of delivery (the "Limited Warranty") pursuant to the software license included with the Product. The software license specifically disclaims all other warranties relating to the Products, including any and all other warranties with respect to the performance of the Products.
- B. <u>Hardware and Other Equipment Manufactured By Intuicom</u>. Hardware products manufactured by INTUICOM include a limited warranty for defects in materials or workmanship under normal use and service for a period of one (1) year from the date of delivery. Intuicom, at its sole discretion, will repair or replace hardware covered under this limited warranty. Cables, antennas or other accessories manufactured by INTUICOM include a limited warranty for defects in materials or workmanship under normal use and service for a period of ninety (90) days from the date of delivery. Repairs not covered under this limited warranty will be billed as set forth in INTUICOM's current Hardware Service Policy and Instructions.
- C. Hardware Manufactured By Others. INTUICOM makes no warranties whatsoever with respect to Hardware manufactured by third parties. Customers shall look only to the original manufacturer of the Hardware, pursuant to the terms of any manufacturer warranty for any alleged defects and indemnifies and holds INTUICOM harmless from and against any claims by any party related directly or indirectly to any defects in the Hardware, and functional failure, improper operation, failure to operate according to specifications or any other matter related to the Hardware. INTUICOM shall not be liable or responsible for the failure of the Manufacturer to perform under or honor any warranty with respect to the Hardware. Customer acknowledges and agrees that Customer shall have the risk of any loss, damage or functional failure related to the HARDWARE and shall have the responsibility for maintaining the proper operation of the HARDWARE and complying with all maintenance guidelines and specifications from the Manufacturer and all other conditions to receiving warranty coverage from the Manufacturer.
- D. No Other Warranty. EXCEPT FOR THE EXPRESS STANDARD LIMITED WARRANTY REFERENCED ABOVE, INTUICOM GRANTS NO OTHER WARRANTIES, EXPRESS OR IMPLIED, REGARDING THE PRODUCTS, THEIR FITNESS FOR ANY PURPOSE, THEIR QUALITY, THEIR MERCHANTABILITY OR OTHERWISE. INTUICOM DOES NOT MAKE BY VIRTUE OF THIS AGREEMENT OR ANY PRODUCT ORDER, AND HEREBY EXPRESSLY DISCLAIMS, ANY OTHER REPRESENTATION OR WARRANTY OF ANY KIND WITH RESPECT TO THE PRODUCTS.
- E. <u>Limitation of Liability</u>. IN NO EVENT WILL INTUICOM BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, INCIDENTAL, BUSINESS INTERUPTION, CATESTROHPIC, PUNITIVE OR OTHER DAMAGES WHICH MAY BE CLAIMED TO ARISE IN CONECTION WITH ITS PRODUCTS, REGARDLESS OF THE LEGAL THEORY BEHIND SUCH CLAIMS, WHETHER IN TORT, CONTRACT OR UNDER ANY APPLICABLE STATUTORY OR REGULATORY LAWS, RULES, REGULATIONS, EXECUTIVE OR ADMINISTRATIVE ORDERS OR DECLARATIONS OR OTHERWISE, EVEN IF INTUICOM HAS BEEN ADVISED OR OTHERWISE HAS KNOWLEDGE OF THE POSSIBILITY OF SUCH DAMAGES AND TAKES NO ACTION TO PREVENT OR MINIMIZE SUCH DAMAGES. IN THE EVENT THAT REGARLDESS OF THE WARRANTY DISCLAIMERS AND HOLD HARMLESS PROVISIONS INCLUDED ABOVE INTUICOM IS SOMEHOW HELD LIABLE OR RESPONSIBLE FOR ANY DAMAGE OR INJURY, INTUICOM'S LIABILITY FOR ANY DAMAGES SHALL NOT EXCEED THE PROFIT REALIZED BY INTUICOM ON THE SALE OR PROVISION OF THE HARDWARE TO THE CUSTOMER.